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Abstract
In this paper, we present a deterministic 𝑂̃ (log1/3 Δ)-round algo-

rithm for the 2-ruling set problem in the sublinearMassively Parallel

Computation (MPC) model. This improves upon the fastest known

deterministic 2-ruling set algorithm for this model, which is the

𝑂̃ (
√︁
log𝑛)-round algorithm by Giliberti and Parsaeian (PODC 2024).

Our result is obtained by derandomizing the “sample-and-gather”

approach of Kothapalli, Pai, and Pemmaraju (FSTTCS 2020). The

“sample-and-gather” approach involves making random sampling

decisions, not just for the current iteration, but a batch of future

iterations. Thus, derandomizing this approach requires the “fixing”

of randomness for a batch of future iterations. We further extend

our results to show that a 𝛽-ruling set for 𝛽 ≥ 2 can be obtained in

𝑂̃ (log1/2𝛽−1 Δ) deterministic rounds in the sublinear MPC model.

Additionally, we present a deterministic 𝛽-ruling set algorithms

for sparse graphs (i.e., bounded arboricity graphs) where 𝛽 ≥ 2,

which runs in 𝑂̃ (log1/2𝛽−1 𝜆) rounds for arboricity-𝜆 graphs in the

sublinear MPC model.
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1 Introduction
Symmetry breaking problems are some of the most widely studied

problems in the context of distributed graph algorithms. Some well-

known examples of symmetry breaking problems include maximal

independent set (MIS), (Δ + 1)-coloring, maximal matching, and

the 𝛽-ruling set problem, which is the focus of this paper. Random-

ization has proven to be a key ingredient in designing the fastest

known algorithms for all of these problems. For example, for MIS,

the fastest algorithm in the classical LOCAL and CONGEST models

of distributed computing is an elegant,𝑂 (log𝑛)-round, randomized

algorithm, independently designed by Luby [18] and Alon, Babai,

and Itai [1] more than 25 years ago. This algorithm, commonly

known as Luby’s algorithm, is faster than any known deterministic

MIS algorithm.

The success of randomization in solving symmetry breaking

problems has motivated both theoretical and practical questions

about its inherent power. Specifically, researchers are focused on

either designing deterministic symmetry breaking algorithms that

match the speed of their randomized counterparts or alternately

showing, through lower bound arguments, that achieving this is

impossible. In recent years, there has been considerable progress in

addressing the first challenge. In particular, within all-to-all com-

munication models such as the CONGESTED–CLIQUE and MPC

model, researchers have successfully designed efficient determinis-

tic algorithms for symmetry breaking problems by derandomizing

existing randomized algorithms (see e.g., [5, 7, 8, 21]).

The MPC model, as introduced in [15], has gained significant

attention due to its flexibility and its ability to model several widely

used distributed computing frameworks. This model is particularly

valued for its ability to model practical applications by simulat-

ing frameworks such as MapReduce [9], known for its scalability

and efficiency in processing large datasets; Spark [24], which ex-

cels in in-memory computations and iterative algorithms; Pregel

[19], designed for large-scale graph processing; and Giraph [6],

an extension of Pregel, optimized for distributed graph computa-

tions. The MPC model (described more precisely in Section 1.1)

consists of a collection of memory-constrained machines that are

fully interconnected by a bandwidth constrained communication

network. The number of machines and the memory per machine

are strongly sublinear in the input size, modeling the fact that the

problem instances in this setting are extremely large. Of course, the
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total memory (across all machines) needs to be sufficient to store

the entire input. For graph problems, we distinguish between the

sublinear memory MPC model, in which the memory per machine

is strongly sublinear even in the number of vertices in the input

graph, and the linear memoryMPCmodel, in which the memory per

machine is linear in the number of vertices in the input graph. This

distinction seems important because it has been markedly easier to

design efficient algorithms for graph problems in the linear memory

MPC model compared to the sublinear memory MPC model.

The focus of this paper is the derandomization of randomized

algorithms for the 𝛽-ruling set problem in the sublinear memory

MPC model. For any integer 𝛽 ≥ 1, the 𝛽-ruling set of a graph

𝐺 = (𝑉 , 𝐸) is an independent (i.e., pairwise non-adjacent) set𝑈 ⊆ 𝑉
of vertices such that every vertex in 𝑣 ∈ 𝑉 is either in 𝑈 or has

a vertex in 𝑈 that is at most 𝛽 hops in 𝐺 from it. A 1-ruling set

is just a maximal independent set. Randomization has proven to

be critical in designing extremely fast, sub-logarithmic, and even

constant round algorithms for the 𝛽-ruling set problem in the MPC

model. In the sublinear memory MPC model, Kothapalli, Pai, and

Pemmaraju use a technique that they call “sample and gather” to

design a randomized 𝑂̃ (log1/6 Δ)-round algorithm for the 2-ruling

set problem [16]
1
. Here Δ is the maximum degree of the graph. In

the linear memory MPC model, Cambus, Kuhn, Pai, and Uitto [4]

present a randomized 𝑂 (1)-round algorithm for the 2-ruling set

problem.

Now we focus on deterministic algorithms for 𝛽-ruling sets in

the MPC model; all of the algorithms mentioned here are obtained

by derandomizing pre-existing randomized 𝛽-ruling set algorithms.

Czumaj, Davies, and Parter [7] showed that an MIS (1-ruling set)

can be constructed deterministically in 𝑂 (logΔ + log log𝑛) rounds
in the sublinear memory MPC model. This result is obtained by

derandomizing the well-known Luby’s MIS algorithm. Pai and Pem-

maraju [21] showed that a much faster deterministic 2-ruling set

algorithm, requiring only 𝑂 (log log𝑛) rounds, exists in the linear

memory MPC model. However, they left unresolved the challenge

of efficiently and deterministically constructing 2-ruling sets in the

sublinear memory MPC model. The Pai-Pemmaraju deterministic

algorithm is obtained by derandomizing a randomized sparsifica-

tion algorithm due to Kothapalli and Pemmaraju [17]. Very recently,

Giliberti and Parsaeian [13] improved the result of Pai and Pem-

maraju. They showed that in the linear memory model, a 2-ruling

set can be deterministically constructed in just 𝑂 (1) rounds. This
result was obtained by derandomizing the aforementioned 𝑂 (1)-
round randomized 2-ruling set algorithm due to Cambus, Kuhn,

Pai, and Uitto [4]. In the same paper, Giliberti and Parsaeian [13]

also solved the open question from Pai and Pemmaraju [21] by pre-

senting a deterministic 𝑂 (log1/2 Δ)-round 2-ruling set algorithm

in the sublinear memory MPC model. This result was obtained

by derandomizing the randomized sparsification algorithm due to

Kothapalli and Pemmaraju [17].

Giliberti and Pasaeian [13] leave open the question of whether a

faster deterministic 2-ruling set algorithm in the sublinear memory

MPC model can be achieved by derandomizing the more recent

1
In this paper, we use the 𝑂̃ (𝑓 (𝑛) ) notation to hide𝑂 (poly(log 𝑓 (𝑛) ) ) terms. We

abuse this slightly to allow 𝑂̃ (log𝑎 Δ) for constant 𝑎 > 0, to hide𝑂 (poly(log log𝑛) )
terms.

randomized 2-ruling set algorithm [16], which employs the “sample

and gather” technique. Specifically, with regards to derandomizing

the “sample and gather” technique, they say

A key assumption of this technique, however, is that

of fixing the randomness of future iterations a priori.

Consequently, extending this technique to achieve

such a speed up deterministically appears to require

a substantially novel approach.

In the present paper we do show away to fix the randomness needed

by nodes in future iterations a priori. This technique, coupled with

the technique of sparsification [17] and a local simulation based

on ball doubling [16] allows us to improve upon the results from

[13] for deterministically constructing 2-ruling sets in the sublinear

memory MPC model. In particular, we show that a 2-ruling set can

be constructed deterministically in 𝑂̃ (log1/3 Δ) rounds. We then

extend our results to show that a 𝛽-ruling set for 𝛽 ≥ 2 can be ob-

tained in 𝑂̃ (log1/(2𝛽−1) Δ) rounds in the sublinear memory model.

Finally, combining our results with those of Fischer, Giliberti, and

Grunau [10] for bounded arboricity graphs, we show that a 𝛽-ruling

set of a graph𝐺 with arboricity 𝜆 can be computed deterministically

in the sublinear memory MPC model in 𝑂̃ (log1/(2𝛽−1) 𝜆) rounds.

1.1 The MPC Model
The MPC model is characterized by having a set of machines, each

with a fixed memory of 𝑆 words. These machines are fully intercon-

nected with communication links. The model assumes synchronous

communication and computation. In each round, a machine can

receive up to 𝑂 (𝑆) words via communication links, perform local

computations, and send up to 𝑂 (𝑆) words through the same links.

Note that this is not a per edge bandwidth constraint; rather it is

bound on the total number of words that a machine can receive or

send in a round. The model assumes that for an input size 𝑁 , both

the memory per machine and the number of machines are𝑂 (𝑁 1−𝛿 )
for a constant 𝛿 ∈ (0, 1). This implies that both the memory per

machine and the number of machines are strongly sublinear in the

input size.

When focusing on graph problems, notice that 𝑁 = 𝑂̃ (𝑛 +𝑚)
where the input graph 𝐺 = (𝑉 , 𝐸) has 𝑛 nodes and𝑚 edges. There-

fore, 𝑆 = 𝑂̃ ((𝑛 +𝑚)1−𝛿 ). However, the relationship between 𝑆 and

the number of nodes 𝑛, seems to play an important role in determin-

ing how easy it is to design algorithms in the MPC model. There

are two popular variants of the MPC model in the context of graph

problems: the sublinear memory MPC model and the linear memory

MPC model. In the sublinear memory MPC model, 𝑆 = 𝑂̃ (𝑛𝜖 ) for
some constant 0 < 𝜖 < 1, whereas in the linear memory MPC

model, 𝑆 = 𝑂̃ (𝑛). Note that for dense graphs, i.e., graphs for which
𝑚 = Ω(𝑛1+𝜖 ′ ) for constant 𝜖′ > 0, both the sublinear memory

MPC model and the linear memory MPC model are well-defined,

whereas for sparse graphs, i.e., graphs for which𝑚 = Θ̃(𝑛), only
the sublinear memory MPC model is well-defined. In other words,

the sublinear memory MPC model is defined for all graphs and this

model is the focus of this paper.

In the sublinear memory MPC model, node-centric distribution

of the input graph simplifies the design and implementation of

graph algorithms and is therefore assumed. In this setup, each node
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𝑣 is assigned to a specific machine 𝑀𝑣 . This machine 𝑀𝑣 knows

both the neighbors of 𝑣 and the machines to which these neighbors

are assigned. However, the information about neighbors might

exceed the memory of a single machine. To address this, a node

𝑣 with deg(𝑣) > 𝑛𝜖 is assumed to be split into copies distributed

across different machines. These copies are organized into a virtual

balanced tree, where each node has 𝑛𝜖 branches and the tree has

a depth of 𝑂 (1/𝜖). The root of the tree manages communication

between 𝑣 and its neighbors in the input graph, which requires

𝑂 (1/𝜖) rounds ([2, 12, 13, 16]).

1.2 Main Results
In this paper, we present an algorithm for the 2-ruling set problem

running in 𝑂̃ (log1/3 Δ) rounds deterministically, in the sublinear

memory MPC model. Our algorithm uses techniques such as ball

doubling and gathering to show that 𝑡 rounds of the sparsification

approach of Kothapalli and Pemmaraju [17] can be compressed

to run "locally" in the sublinear memory MPC model in 𝑂̃ (log 𝑡)
rounds. To this end, we rely on the derandomization technique of

Giliberti and Parsaeian. [13] coupled with the deterministic MIS

algorithm in the sublinear memory MPC model of Czumaj, Davies

and Parter. [7]. Using these techniques, we arrive at Theorem 1.

Theorem 1. There is a deterministic sublinear memory MPC algo-

rithm that computes a 2-ruling set in𝑂 (log1/3 Δ·log logΔ+log log𝑛)
rounds using 𝑂̃ (𝑚 + 𝑛1+𝜖 ) total memory.

Subsequently, using the repeated sparsification approach from

[3], we obtain the following theorem for 𝛽–ruling sets.

Theorem 2. There is a deterministic sublinear memory MPC al-

gorithm that computes a 𝛽-ruling set in 𝑂 (log1/2𝛽−1 Δ · log logΔ +
log log𝑛) rounds using 𝑂̃ (𝑚 + 𝑛1+𝜖 ) total memory.

Combining our results with those from Fischer, Giliberti, and

Grunau [10], we also obtain the following results that show how to

deterministically compute 2-ruling sets and 𝛽-ruling sets using far

fewer rounds for low arboricity graphs. The arboricity of a graph

is the minimum number of forests into which its edges can be

partitioned. The arboricity of a graph is a measure of its sparsity;

a graph with low arboricity is uniformly sparse. This can be seen

by noting that the arboricity of a graph is closely related (within

a factor of 2) to the degeneracy of a graph, which is defined as the

maximum, over all induced subgraphs of the graph, of the minimum

degree of a vertex in the subgraph.

Theorem 3. There exists a deterministic sublinear memory MPC

algorithm that computes a 2-ruling set of a 𝜆-arboricity graph in

𝑂 (log1/3 𝜆 · log log 𝜆 + log log𝑛) rounds using 𝑂 (𝑚 + 𝑛1+𝜖 ) total
memory.

Theorem 4. A 𝛽-ruling set of a graph 𝐺 with arboricity 𝜆 can be

computed deterministically in the sublinear memory MPC model in

𝑂 (log1/2𝛽−1 𝜆 · log log 𝜆 + log log𝑛) rounds with 𝑂̃ (𝑚 + 𝑛1+𝜖 ) total
memory.

Note:We note that the results in Giliberti and Parsaeian [13] use

linear total (global) memory, i.e., 𝑂 (𝑚 + 𝑛) memory, over all ma-

chines. Our results use slightly more,𝑂 (𝑚 +𝑛1+𝜖 ) total memory for

the setting where the memory per machine 𝑆 = 𝑂̃ (𝑛𝜖 ) words. Using

this amount of total memory keeps the exposition relatively simple.

We have not investigated if our current results can be achieved

with linear total memory.

1.3 Other Related Work
Besides the work reviewed earlier in the introduction, which is

directly related to the present paper, there is other work that is

more broadly relevant. Censor-Hillel, Parter, and Schwartzman [5]

were the first to take advantage of all-to-all communication in order

to derandomize symmetry breaking algorithms using the method

of conditional expectations. They applied this approach to deran-

domize MIS algorithms in the CONGESTED–CLIQUE model. Much

of the subsequent work on derandomization in the CONGESTED–

CLIQUE and MPC model follows the overall approach of [5]. While

this paper focuses on symmetry breaking problems, there has also

been significant effort in derandomizing algorithms for other types

of problems in all-to-all communication models, such as (2𝑘 − 1)-
spanner construction [5, 22].

We remark that our sparsification plus derandomization tech-

nique, which combines randomized sparsification algorithms in

[16, 17] with derandomization techniques in all-to-all communica-

tion settings [5, 13], resembles (at least superficially) the sparsifi-

cation plus derandomization strategy of Maus, Peltonen and Uitto

[20]. Their algorithm [20] computes a 𝛽-ruling set in the CONGEST

model in a setting where the communication network is a graph 𝐺 ,

but the input graph is a power graph 𝐺𝑘
of 𝐺 .

There have also been exciting developments in designing deter-

ministic distributed algorithms for symmetry breaking problems

in the classical models of distributed computing, such as LOCAL

and CONGEST. This line of work builds on the breakthrough de-

terministic algorithm for network decomposition, which runs in

polylogarithmic rounds, as introduced by Rozhoň and Ghaffari [23].

1.4 Notation
For a node 𝑣 in graph 𝐺 , we denote its non-inclusive neighbor-

hood by Nbr𝐺 (𝑣) and its inclusive neighborhood by Nbr+𝐺 (𝑣) =
Nbr𝐺 (𝑣) ∪ {𝑣}. Similarly, for a set 𝑆 of nodes, Nbr𝐺 (𝑆) =

⋃
𝑣∈𝑆

Nbr(𝑣) \ 𝑆 represents the non-inclusive neighborhood of all nodes

in 𝑆 , and Nbr+𝐺 (𝑆) =
⋃

𝑣∈𝑆 Nbr
+
𝐺 (𝑣) represents the inclusive

neighborhood. Let deg𝐺 (𝑣) denote the degree of a node 𝑣 in graph

𝐺 = (𝑉 , 𝐸).

2 Fast Deterministic 2-Ruling Sets
This section demonstrates that for an input graph𝐺 with maximum

degree Δ, there is a deterministic 2-ruling set algorithm in the MPC

model that runs in 𝑂 (log1/3 Δ · log logΔ + log log𝑛) rounds using
𝑂̃ (𝑚 + 𝑛1+𝜖 ) total memory.

Our deterministic 2-ruling set algorithm for a graph 𝐺 = (𝑉 , 𝐸)
consist of two parts. In Part 1, we sparsify the input graph deter-

ministically by identifying a dominating set 𝑈 of graph 𝐺 , i.e., a

set 𝑈 satisfying Nbr+𝐺 (𝑈 ) = 𝑉 . Subsequently, in Part 2, the graph

𝐺 [𝑈 ] is given as input to a deterministic MIS algorithm in the MPC

model. The independent set output by this algorithm serves as a

2-ruling set for 𝐺 . For Part 2, we directly use the MIS algorithms

in [7, 10]. Our main contribution in this section is in showing that

a dominating set𝑈 can be found efficiently and deterministically
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with the property the maximum degree of𝐺 [𝑈 ] is small. Bounding

the maximum degree of𝐺 [𝑈 ] is critical because the running time of

the MIS algorithms (used in Part 2) is determined by this quantity.

A high-level overview of our algorithm is as follows; details ap-

pear in subsequent subsections. We begin with a modified version

of the randomized sparsification algorithm of Kothapalli, Pai, and

Pemmaraju [16], depicted as Algorithm 1. This algorithm consists

of ⌈log𝑓 Δ⌉ iterations, for some positive parameter 𝑓 , which trans-

lates into 𝑂 (log𝑓 Δ) MPC rounds. Next, we partition the ⌈log𝑓 Δ⌉
iterations of Algorithm 1 into batches consisting of 𝑡 iterations

each, where 𝑡 is a positive integer parameter. We show how to

“compress” these 𝑡 iterations in a batch so that a batch can be

executed in 𝑂 (log 𝑡) MPC rounds, instead of 𝑂 (𝑡) MPC rounds.

This “compressed” randomized sparsification algorithm appears

in Algorithm 2. Finally, we apply the derandomization technique

of Giliberti and Parsaeian [13] to the “compressed” randomized

sparsification algorithm and finish off Part 1.

2.1 The Randomized Sparsification Algorithm
Algorithm 1 is a modified version of DegOrderedSparsify by

Kothapalli, Pai, and Pemmaraju [16]. We call it RandSparsify be-

cause it no longer processes nodes by degrees and to emphasize the

fact that it is randomized. This algorithm will serve as the skeleton

of our proposed algorithm.

This algorithm constructs a subset of vertices 𝑈 that dominates

all vertices in the graph (i.e., Nbr+ (𝑈 ) = 𝑉 ) in 𝑂 (log𝑓 Δ) rounds
with the property that the maximum degree in 𝐺 [𝑈 ] is 𝑂 (𝑓 log𝑛)
with high probability. Initially, all nodes are active. In iteration 𝑘 ,

each active node is sampled with probability 𝑓 𝑘 · 𝑐 ln𝑛/Δ for some

constant 𝑐 . Sampled nodes are placed in 𝑈𝑘 . The set 𝑈𝑘 is added

to 𝑈 and all the nodes in 𝑈𝑘 and their neighbors are deactivated,

i.e., subsequently excluded from consideration in future iterations.

Pseudocode is presented in Algorithm 1.

Algorithm 1: RandSparsify [16]
Input :Graph 𝐺 = (𝑉 , 𝐸) with maximum degree Δ,

parameter 𝑓

Output :a dominating set𝑈 on 𝐺

1 𝑈 ← ∅,𝑉0 ← 𝑉 ; // Initially all nodes are active

2 for iteration k = 1 to ⌈log𝑓 Δ⌉ do
3 𝑈𝑘 ← sample 𝑣 ∈ 𝑉𝑘−1 with prob. 𝑓 𝑘 · 𝑐 ln𝑛/Δ
4 𝑉𝑘 ← 𝑉𝑘−1 \ Nbr+ (𝑈𝑘 )
5 𝑈 ← 𝑈 ∪𝑈𝑘

6 end

Notation: For any node 𝑣 ∈ 𝑉𝑘−1, we will use 𝜎𝑘 (𝑣) to denote the

output at node 𝑣 after iteration 𝑘 of Algorithm 1. Thus, 𝜎𝑘 (𝑣) can
take on 3 possible values because it indicates if 𝑣 belongs to 𝑈𝑘 or

to Nbr+ (𝑈𝑘 ) \𝑈𝑘 or to𝑉𝑘 after iteration 𝑘 . We will use this notation

to help in the description of our next algorithm.

2.2 The Compressed Randomized Sparsification
Algorithm

Next we propose a compressed version of Algorithm 1. We note

that this algorithm implicitly appears in [16]. The “sample-and-

gather” simulation theorem from [16] describes a collection of

conditions that, if satisfied by an algorithm in the CONGEST model,

would lead to an efficient simulation of that algorithm in the MPC

model. However, due to the general nature of these conditions, it

is challenging to determine whether an algorithm satisfying them

can be efficiently derandomized.

In this subsection, we explicitly state the “compressed” version

of Algorithm 1 which is obtained by applying the “sample-and-

gather” simulation theorem to RandSparsify. Once this algorithm

is explicitly stated, we will show how to apply the derandomiza-

tion technique of Giliberti and Parsaeian [13] to convert this into a

deterministic algorithm. Specifically, we will show that the “com-

pressed” algorithm can be viewed as executing a batch of iterations

in parallel and we can “fix” the randomness of this entire batch in

one shot.

2.2.1 Parallel Sampling . The reader is advised to refer to the

pseudocode presented in Algorithm 2 while reading the follow-

ing description. Firstly, to accelerate RandSparsify, rather than

executing it over ⌈log𝑓 Δ⌉ iterations, we partition these ⌈log𝑓 Δ⌉
iterations into ⌈log𝑓 Δ/𝑡⌉ batches, where each batch consists of 𝑡

“compressed” iterations of RandSparsify (steps 3-7 in Algorithm 2).

(If ⌈log𝑓 Δ⌉ is not divisible by 𝑡 , the last batch may contain fewer

than 𝑡 iterations.) Here 𝑡 is a parameter whose valuewill be specified

later.

Specifically, batch 𝑖 in Algorithm 2 corresponds to 𝑡 iterations of

Algorithm 1, namely iterations (𝑖−1) ·𝑡+1, (𝑖−1) ·𝑡+2, . . . , (𝑖−1) ·𝑡+𝑡 .
Using 𝑉(𝑖−1) ·𝑡 to denote the set of vertices in 𝐺 that are still active

after batch 𝑖 − 1 has been completed, completion of batch 𝑖 − 1

corresponds to the completion of (𝑖 − 1) · 𝑡 iterations of Algorthm 1.

It follows that the beginning of batch 𝑖 , 𝐺 [𝑉(𝑖−1) ·𝑡 ] is determined

and each node 𝑣 ∈ 𝐺 [𝑉(𝑖−1) ·𝑡 ] knows its neighbors in 𝐺 [𝑉(𝑖−1) ·𝑡 ].
Assuming that batches 1 through 𝑖 − 1 have been completed, we

execute the 𝑡 iterations in batch 𝑖 in parallel. This essentially means

that in batch 𝑖 , an iteration 𝑗 > 1 cannot rely on the completion

of iteration 𝑗 − 1. To execute the iterations in parallel in our com-

pressed version of Algorithm 1, we use exactly the same sampling

probability as in Algorithm 1. Thus, assuming both algorithms use

the same string of random bits, a node that is sampled in an iteration

of Algorithm 1 will also be sampled in the corresponding iteration

of Algorithm 2. However, in Algorithm 2, additional nodes may

also be sampled. This happens when a node gets deactivated in an

iteration of Algorithm 1 because its neighbor has been sampled, but

the node is still considered active by Algorithm 2 as the exclusion

operation hasn’t taken place.

2.2.2 Gathering. After parallel sampling in batch 𝑖 is completed,

the algorithm performs gathering (steps 8-9 in Algorithm 2) towards

the simulation of the 𝑡 iterations of Algorithm 1. For each node

𝑣 ∈ 𝑉(𝑖−1) ·𝑡 , define s𝑣 ∈ {0, 1}𝑡 , as s𝑣 [ 𝑗] = 1 iff 𝑣 is sampled in

iteration 𝑗 in the current batch. In other words, the vector s𝑣 is the
indicator vector, indicating the membership of 𝑣 in the 𝑡 samples

in the current batch. A node 𝑣 is said to be sampled if s(𝑣) ≠ 0. In
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the gathering step, each node 𝑣 ∈ 𝑉(𝑖−1) ·𝑡 , gathers the set 𝑆 (𝑣, 𝑡),
consisting of labeled, sampled nodes that are reachable within 𝑡

hops from it, through other sampled nodes.

We precisely define the set 𝑆 (𝑣, 𝑡) now. Let 𝑅𝑡 (𝑣,𝑢) denote a

function that indicates if it is possible to travel from 𝑣 to 𝑢 along

a path of length at most 𝑡 in which every intermediate node is

sampled. For any node 𝑣 ∈ 𝑉(𝑖−1) ·𝑡 , let SampNbr(𝑣) denote the set
of sampled neighbors of node 𝑣 . Note that all sampled neighbors

also belong to 𝑉(𝑖−1) ·𝑡 because only nodes in 𝑉(𝑖−1) ·𝑡 are sampled.

Every node 𝑣 ∈ 𝑉(𝑖−1) ·𝑡 gives itself the label

𝐿𝑣 = (𝐼𝐷𝑣, s𝑣, {𝐼𝐷𝑤 | 𝑤 ∈ SampNbr(𝑣)})).

Then

𝑆 (𝑣, 𝑡) = {𝐿𝑢 | s𝑢 ≠ 0, 𝑅𝑡 (𝑣,𝑢) = 1}.

2.2.3 Simulation. Utilizing the labeled set 𝑆 (𝑣, 𝑡) of nodes, node
𝑣 locally simulates (steps 10-13 in Algorithm 2) iterations (𝑖 − 1) ·
𝑡 + 1, (𝑖 − 1) · 𝑡 + 2, . . . , (𝑖 − 1) · 𝑡 + 𝑡 of Algorithm 1 and computes its

output 𝜎 (𝑖−1) ·𝑡+𝑗 (𝑣) after each iteration (𝑖 −1) · 𝑡 + 𝑗 of Algorithm 1.

Note that the output of a node indicates whether it joins𝑈 (𝑖−1) ·𝑡+𝑗 ,
becomes inactive because a neighbor has joined 𝑈 (𝑖−1) ·𝑡+𝑗 , or re-
mains active. This completes the final steps corresponding to t

iterations of Algorithm 1 (in compressed manner). We now present

formal argument on adherence to Algorithm 1 using lemma 5 and

lemma 6. Additionally, in Lemma 7, we give a result on maximum

degree of active graph.

Lemma 5. Assume both Algorithm 1 and 2 use the same string of

random bits. Let 1 ≤ 𝑘 ≤ ⌈log𝑓 Δ⌉, 1 ≤ 𝑖 ≤ ⌈log𝑓 Δ/𝑡⌉, 1 ≤ 𝑗 ≤ 𝑡

be integers such that 𝑘 = (𝑖 − 1) · 𝑡 + 𝑗 , then𝑈𝑘 ⊆ 𝑉 𝑠𝑢𝑏
(𝑖−1) ·𝑡+𝑗 , where

𝑈𝑘 is returned after Step 3 in Algorithm 1 and 𝑉 𝑠𝑢𝑏
(𝑖−1) ·𝑡+𝑗 is returned

after Step 5 in Algorithm 2.

Proof. It is observed that the set of active nodes 𝑉𝑘−1 in the

RandSparsify is a subset of 𝑉(𝑖−1) ·𝑡 in the CompRandSparsify.

Since they are sampled with the same probability,𝑈𝑘 ⊆ 𝑉 𝑠𝑢𝑏
(𝑖−1) ·𝑡+𝑗 ,

where 𝑘 = (𝑖−1) ·𝑡 + 𝑗 denote the same iteration in Algorithm 1. □

Lemma 6. Assume both Algorithm 1 and 2 use the same string of

random bits. Let 1 ≤ 𝑘 ≤ ⌈log𝑓 Δ⌉, 1 ≤ 𝑖 ≤ ⌈log𝑓 Δ/𝑡⌉, 1 ≤ 𝑗 ≤ 𝑡

be integers. The set𝑈𝑘 computed in Step 3 in Algortihm 1 is identical

to the set 𝑈 (𝑖−1) ·𝑡+𝑗 computed in Step 12 in Algorithm 2 whenever

𝑘 = (𝑖 − 1) · 𝑡 + 𝑗 .

Proof. We first claim that starting from the same active graph,

within 𝑡 rounds, 𝑈 from Algorithm 1 and from Algorithm 2 are

identical. Let 𝑈 (1) denote 𝑈 from Algorithm 1 and 𝑈 (2) denote
𝑈 from Algorithm 2. We prove this claim by induction. In the

first round, the active graph is the same, and the active nodes are

sampled with the same probability. Since this is the first round, the

simulation does not need to consider the future rounds. Thus, 𝑈1

from both algorithms are identical. Assume this claim is true for

𝑙 rounds, and we will show that this claim is true for 𝑙 + 1 round.
After 𝑙 + 1 rounds, we have𝑈 (1)

𝑙+1 ⊆ 𝑈
(2)
𝑙+1 since any node 𝑢 ∈ 𝑈 (1)

𝑙+1
is also sampled in Algorithm 2, and 𝑢 must not be the neighbor of

previous 𝑈 ’s and will not be deleted at simulation. Now, we show

𝑈
(2)
𝑙+1 ⊆ 𝑈

(1)
𝑙+1 . First, we have𝑈

(1)
𝑙+1 ⊆ 𝑉

𝑠𝑢𝑏
𝑙+1 (Lemma 5). We can show

that any node𝑢 ∈ 𝑉 𝑠𝑢𝑏
𝑙+1 −𝑈

(1)
𝑙+1 is not in𝑈

(2)
𝑙+1 . Since𝑢 is sampled but

not in𝑈
(1)
𝑙+1 , such 𝑢 must be inactive at the start of round 𝑙 + 1 and

will be deleted in the simulation. Since𝑈
(2)
𝑙+1 ⊆ 𝑉

𝑠𝑢𝑏
𝑙+1 ,𝑈

(2)
𝑙+1 ⊆ 𝑈

(1)
𝑙+1 .

Now, we can prove the lemma by induction. For 𝑖 = 1, we have

𝑘 = 𝑗 . Since both algorithms start from the original graph, the base

case holds according to the above claim. Suppose 𝑖 = 𝑥 , the lemma

still holds. When 𝑖 = 𝑥 + 1, since both algorithms still start from the

same active graph, the lemma follows. □

Lemma 7. The maximum degree of active graph𝐺 [𝑉𝑖 ·𝑡 ] is Δ/𝑓 𝑖 ·𝑡 .

Proof. Based on lemma 6, we have 𝑈 (𝑖−1) ·𝑡+𝑗 = 𝑈𝑘 , where

𝑘 = (𝑖 − 1) · 𝑡 + 𝑗 . It follows that 𝑉(𝑖−1) ·𝑡+𝑗 = 𝑉𝑘 . Consequently,

when 𝑘 = 𝑖 · 𝑡 , the maximum degree of the active graph in both

algorithms is identical. Since the maximum degree in Algorithm 1

falls by a factor of 𝑓 in each iteration, the lemma follows. □

After the simulation steps, nodes join𝑈 (𝑖−1) ·𝑡+𝑗 and deactivate

themselves, along with their neighbors (steps 14-15).

Algorithm 2: CompRandSparsify
Input :Graph 𝐺 = (𝑉 , 𝐸) with maximum degree Δ,

parameters 𝑓 , 𝑡

Output :a dominating set𝑈 on 𝐺

1 𝑈 ← ∅,𝑉0 ← 𝑉 ; // Initially all nodes are active

2 for batches 𝑖 = 1 to ⌈
log𝑓 Δ

𝑡 ⌉ do
3 for 𝑗 ∈ [1, 𝑡] in parallel do

// Parallel Sampling. See also Section 2.2.1

4 Sample each node 𝑣 ∈ 𝐺 [𝑉(𝑖−1) ·𝑡 ] with prob.

𝑓 (𝑖−1) ·𝑡+𝑗 · 𝑐 ln𝑛/Δ
5 𝑉 𝑠𝑢𝑏

(𝑖−1) ·𝑡+𝑗 ← {𝑣 | 𝑣 is sampled in Line 4}
6 s𝑣 [ 𝑗] ← 1 if node 𝑣 ∈ 𝑉 𝑠𝑢𝑏

(𝑖−1) ·𝑡+𝑗
7 end

// Gathering. See also Section 2.2.2

8 Each node 𝑣 ∈ 𝑉(𝑖−1) ·𝑡 gives itself the label 𝐿𝑣
9 Each node 𝑣 ∈ 𝑉(𝑖−1) ·𝑡 gathers 𝑆 (𝑣, 𝑡)

10 for 𝑗 ∈ [1, 𝑡] in parallel do
// Simulation. See also Section 2.2.3

11 Each node 𝑣 ∈ 𝑉(𝑖−1) ·𝑡 performs local computation

using 𝑆 (𝑣, 𝑡) to simulate Algorithm 1 and compute

its output 𝜎 (𝑖−1) ·𝑡+𝑗 (𝑣)
12 Each node 𝑣 ∈ 𝑉(𝑖−1) ·𝑡 joins𝑈 (𝑖−1) ·𝑡+𝑗 if

𝜎 (𝑖−1) ·𝑡+𝑗 (𝑣) indicates that it belongs to𝑈 (𝑖−1) ·𝑡+𝑗
13 end
14 𝑉𝑖 ·𝑡 ← 𝑉(𝑖−1) ·𝑡 \ ∪𝑡𝑗=1Nbr

+ (𝑈 (𝑖−1) ·𝑡+𝑗 )
15 𝑈 ← 𝑈 ∪ (∪𝑡

𝑗=1
𝑈 (𝑖−1) ·𝑡+𝑗 )

16 end

2.3 MPC Implementation
To keep exposition clear, the description of Algorithm 2 is node-

centric, i.e. it specifies actions performed by each node 𝑣 in𝐺 in each

iteration. In the MPC model, each node in the graph is assigned to
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a specific machine, which is responsible for storing and managing

that node as well as handling the associated computations and

communication. This machine is aware of the node’s neighbors

and the machines that store those neighboring nodes. A machine

may host multiple nodes, provided it stays within its local memory

capacity.

Algorithm 2 involves local sampling (Step 3-7 in Algorithm 2),

gathering (Step 8-9 in Algorithm 2), local simulation (Step 10-13 in

Algorithm 2) and updating the set of active nodes and the dominat-

ing set (Step 14-15 in Algorithm 2) in each batch. We will focus on

implementing the gathering step within the MPC model since all

other steps can be implemented using local computation and don’t

need any communication.

There are 𝑂 (log𝑓 Δ/𝑡) batches. Let 𝑓 and 𝑡 be fixed as follows:

𝑓 := 2
𝜖/4 log1/3 Δ

and 𝑡 := ⌈log1/3 Δ⌉. Thus, there are 𝑂 (log1/3 Δ)
batches. In each batch, active nodes need to identify whether each

neighbor has been sampled in each round of the current batch.

Specifically, each active node 𝑣 needs to gather 𝑆 (𝑣, 𝑡). Here, we
do the gathering with the assumption that each machine hosts

exactly one node. In this setting, for each vertex, we can gather 𝑛𝜖

information. This gathering step can be implemented appropriately

because we bound the size of 𝑆 (𝑣, 𝑡). These bounds are proved in

the next section in Lemmas [9,12]. Therefore this gathering step

can be executed in 𝑂 (log logΔ) rounds in the sublinear memory

MPC model with total memory 𝑂̃ (𝑚 + 𝑛1+𝜖 ).

2.4 Analysis
Lemma 8. The number of bits required to represent the set 𝑆 (𝑣, 𝑡)

is 𝑂

((∑𝑡
𝑗=1 𝑓

𝑗
log𝑛

)𝑡 )
.

Proof. In a batch 𝑖 , consider an arbitrary node 𝑣 ∈ 𝑉𝑡 (𝑖−1) and
𝑢 ∈ 𝑆 (𝑣, 𝑡) and an iteration 1 ≤ 𝑗 ≤ 𝑡 . Any node in 𝑉𝑡 (𝑖−1) is sam-

pled with probability 𝑓 𝑡 (𝑖−1)+𝑗𝑐 ln𝑛/Δ. Since the maximum degree

in the active graph 𝐺 [𝑉(𝑖−1) ·𝑡 ] is at most Δ/𝑓 (𝑖−1) ·𝑡 (Lemma 7),

the expected number of sampled neighbors of 𝑢 in iteration 𝑗 is

at most 𝑐 log𝑛 · 𝑓 𝑗 . Furthermore, since in any iteration nodes are

sampled independently, by Chernoff bounds, the number of neigh-

bors of 𝑢 sampled in iteration 𝑗 is 𝑂 (log𝑛 · 𝑓 𝑗 ) with high proba-

bility. By the union bound, the number of sampled neighbors of

𝑢 over all 𝑡 iterations in the batch is 𝑂 (log𝑛 ·∑𝑡
𝑗=1 𝑓

𝑗 ) with high

probability. Similarly, the neighbors of 𝑢 that are sampled have

𝑂 (log𝑛 ·∑𝑡
𝑗=1 𝑓

𝑗 ) sampled neighbors whp. Extending this to a 𝑡-

hop neighborhood from 𝑣 , the number of sampled neighbors of 𝑣

within 𝑡-hop is 𝑂

((∑𝑡
𝑗=1 𝑓

𝑗
log𝑛

)𝑡 )
.

□

Recall that in the MPC implementation (Section 2.3), we have

fixed 𝑓 = 2
𝜖/4 log1/3 Δ

and 𝑡 = ⌈log1/3 Δ⌉. Then, the number of bits

required to represent 𝑆 (𝑣, 𝑡) can be bounded as follows.

Lemma 9. The number of bits representing 𝑆 (𝑣, 𝑡) is 𝑂 (𝑛𝜖/2).

Proof. According to Lemma 8, the number of bits representing

𝑆 (𝑣, 𝑡) is 𝑂
((∑𝑡

𝑗=1 𝑓
𝑗
log𝑛

)𝑡 )
. The sum

∑𝑡
𝑗=1 𝑓

𝑗
is a geometric

series with a common ratio 𝑓 . Simplifying this expression and

substituting the value of 𝑓 and 𝑡 , we can show that

©­«
𝑡∑︁
𝑗=1

𝑓 𝑗 log𝑛
ª®¬
𝑡

=

(
log𝑛 · 𝑓 (1 − 𝑓 𝑡 )

1 − 𝑓

)𝑡
≤ (log𝑛 · 𝑓 𝑡 )𝑡 = 𝑂 (𝑛𝜖/2) .

□

Lemma 10. 𝑆 (𝑣, 𝑡) can be gathered at 𝑀𝑣 in at most 𝑂 (log 𝑡)
rounds.

Proof. The assumption of MPC implementation (Section 2.3)

is that every machine𝑀𝑣 hosts exactly one node 𝑣 . Since 𝑆 (𝑣, 𝑡) =
𝑂 (𝑛𝜖/2) (Lemma 9), 𝑆 (𝑣, 𝑡) contains 𝑂 (𝑛𝜖/2) nodes. Therefore,𝑀𝑣

needs to send a total of 𝑂 (𝑛𝜖/2) × 𝑂 (𝑛𝜖/2) = 𝑂 (𝑛𝜖 ) words. This
communication can be performed in 𝑂 (1) rounds. Thus, nodes
can learn 𝑆 (𝑣, 𝑡) in 𝑂 (log 𝑡) rounds by graph exponentiation tech-

nique. [11, 12, 14, 22]. □

Informally speaking, the reason we gather 𝑆 (𝑣, 𝑡) at each node

𝑣 is that in order to determine the output of 𝑣 in the 𝑗-th iteration

in the future, i.e., 𝜎𝑡 (𝑖−1)+𝑗 (𝑣), we need to know the outputs of the

sampled neighbors of 𝑣 , 𝑤 ∈ SampNbr(𝑣), in ( 𝑗 − 1)-th iteration

of the future, i.e. 𝜎𝑡 (𝑖−1)+𝑗−1 (𝑤). This can be proved precisely, by

induction, in a manner very similar to Claim 5 in [16]. This leads

to the following lemma.

Lemma 11. In the batch 𝑖 , for any node 𝑣 ∈ 𝑉(𝑖−1) ·𝑡 , the infor-
mation of 𝑆 (𝑣, 𝑡) is enough to locally compute 𝜎𝑡 · (𝑖−1)+𝑗 (𝑣), where
𝑗 ∈ [1, 𝑡].

Lemmas 8, 9, 10, 11 together proved the following lemma.

Lemma 12. Suppose every machine hosts one node, and given

𝑓 = 2
𝜖/4 log1/3 Δ

and 𝑡 = ⌈log1/3 Δ⌉, then each batch can be simulated

in 𝑂 (log logΔ) rounds in the sublinear memory MPC model with a

total memory 𝑂̃ (𝑚 + 𝑛1+𝜖 ).

Lemma 13. The maximum degree of𝑈 is 𝑂 (𝑓 · log𝑛).

Proof. Since the Algorithm 2 CompRandSparsify simulates

the Algorithm 1 RandSparsify (Lemma 6), the maximum degree

of𝑈 is the same. □

Theorem 14. Given a graph𝐺 = (𝑉 , 𝐸), the algorithm 2 can be im-

plemented in the sublinearmemoryMPCmodel in𝑂 (log1/3 Δ log logΔ)
rounds with 𝑂̃ (𝑚 + 𝑛1+𝜖 ) total memory.

Proof. This algorithm runs in𝑂 (log1/3 Δ) batches (Section 2.3).

As shown in Lemmas [12] shown, gathering the sampled sub-

graphs requires 𝑂 (log logΔ) rounds in each batch, while the other

steps involve only local computations. Thus computing𝑈 requires

𝑂 (log1/3 Δ · log logΔ) rounds with 𝑂̃ (𝑚 + 𝑛1+𝜖 ) total memory. □

2.5 Deterministic Compressed Sparsification
In this section, we introduce a deterministic version of Algorithm 2.

A key component of our approach is Lemma 15 in Giliberti and

Parsaeian [13]. Let 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) be a graph with maximum degree

Δ𝐻 . Let 𝑓 be a positive parameter satisfying some mild constraints

specified in the lemma statement. This lemma describes a determin-

istic “sampling” method to identify a subset𝑉 𝑠𝑢𝑏
of nodes adjacent
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to all “high degree” nodes in 𝐻 , i.e., nodes with degree at least

Δ𝐻 /𝑓 . Furthermore, 𝑉 𝑠𝑢𝑏
satisfies the property that the maximum

degree of𝐻 [𝑉 𝑠𝑢𝑏 ] is 2𝑂 (log 𝑓 ) . Finally, the deterministic “sampling”

method the lemma promises runs in 𝑂 (log logΔ𝐻 ) rounds in the

sublinear memory MPC model. We state the lemma precisely now.

Our statement of the lemma is a slight modification of the main

lemma in Giliberti and Parsaeian [13, Lemma 4.3] for degree-based

graph sparsification in sublinear MPC regime. It is important to

mention that the proof of [13, Lemma 4.3] uses two lemmas: the first

lemma, [13, Lemma 4.2] reduces the maximum degree in the input

graph to 𝑂 (𝑛𝜖 ), and the second lemma, [13, Lemma 4.1] process

the graph with maximum degree bounded by 𝑂 (𝑛𝜖 ).

Lemma 15 (Giliberti and Parsaeian [13]). Let 𝐻 = (𝑉𝐻 , 𝐸𝐻 )
be a graph with maximum degree Δ𝐻 . Let 𝑓 be a parameter satisfying

𝑓 ≤ Δ0.4

log𝑛
and 𝑓 ≥ poly(log𝑛). Let 𝑈 denote the set of nodes in 𝐻

with degree at least
Δ
𝑓
. There exists a deterministic sublinear memory

MPC algorithm that computes, in 𝑂 (log logΔ𝐻 ) rounds, a subset

𝑉 𝑠𝑢𝑏 ⊆ 𝑉 such that for any node𝑢 ∈ 𝑈 it holds that |Nbr(𝑢)∩𝑉 𝑠𝑢𝑏 | ∈
[1, 2𝑂 (log 𝑓 ) ]. The algorithm’s global space is linear in the input size.

We utilize this lemma as a black box. Let DetSparsify denote

the algorithm promised by Lemma 15. We then modify Algorithm 2

by replacing the randomized sampling steps (Steps 4-5) by an ap-

propriate call to DetSparsify. The modification to Steps 4-5 in

Algorithm 2 is highlighted in the box below.

Algorithm 2, Steps 4-5 replaced by the following:

𝑉 𝑠𝑢𝑏
(𝑖−1) ·𝑡+𝑗 ← DetSparsify

(
𝐻𝑖 = 𝐺 [𝑉𝑡 (𝑖−1) ], parameter 𝑓 𝑗

)
We now turn to analyzing the deterministic version of Algo-

rithm 2.

Theorem 16. Given a graph𝐺 = (𝑉 , 𝐸), there is a deterministic

sublinear memory MPC algorithm that computes a dominating set

𝑈 ⊆ 𝑉 , satisfying the property that the maximum degree of 𝐺 [𝑈 ] is
2
𝑂 (log1/3 Δ)

. This algorithms runs in 𝑂 (log1/3 Δ · log logΔ) rounds
using 𝑂̃ (𝑚 + 𝑛1+𝜖 ) total memory.

Proof. There are𝑂 (log1/3 Δ) batches (Section 2.3). In each batch,
the deterministic sampling step requires 𝑂 (log logΔ) rounds (see
Lemma 15), and the gathering step also requires𝑂 (log logΔ) rounds
(see Lemma 12). All other steps are local. Thus, the theorem fol-

lows. □

2.6 Finishing off the 2-Ruling Set Computation
As Theorem 16 shown, we obtain a dominating set𝑈 deterministi-

cally. We can then get a 2-ruling set of𝐺 by executing the determin-

istic MIS algorithm from [7] on 𝐺 [𝑈 ]. The fact that the maximum

degree of 𝐺 [𝑈 ] is bounded by 2
𝑂 (log1/3 Δ)

implies that the MIS al-

gorithm runs in𝑂 (log1/3 Δ + log log𝑛) rounds. The theorem below

follows.

Theorem 1. There is a deterministic sublinear memory MPC algo-

rithm that computes a 2-ruling set in𝑂 (log1/3 Δ·log logΔ+log log𝑛)
rounds using 𝑂 (𝑚 + 𝑛1+𝜖 ) total memory.

3 Fast 𝛽-Ruling Set Algorithms
In the previous section, we developed an efficient deterministic sub-

linearmemoryMPC algorithm for 2-ruling sets. Let Det2RulingSet

denote the algorithm promised by Theorem 1. Now, we general-

ize this algorithm to create a sublinear memory MPC algorithm

suitable for any integer 𝛽 ≥ 2.

The strategy involves iterating Det2RulingSet for 𝛽-1 times,

following the approach outlined in [3, 16]. Initially, we execute

Det2RulingSet with parameters 𝑓1 and 𝑡1, yielding a dominating

set𝑈1 of 𝐺 [𝑈0], i.e., Nbr+ (𝑈1) = 𝑈0. After this step, the subgraph

𝐺 [𝑈1] has amaximum degree of at most𝑂 (𝑓1 ·log𝑛), as indicated by
Lemma 13. Subsequently, we apply Det2RulingSet to 𝐺 [𝑈1] with
parameters 𝑓2 and 𝑡2, resulting in a dominating set 𝑈2 of 𝐺 [𝑈1],
i.e., Nbr+ (𝑈2) = 𝑈1. Thus, all the nodes 𝑈0 = 𝑉 are at most 2

hops away from the nodes in 𝑈2. This process continues for 𝛽-1

phases, concluding with 𝐺 [𝑈𝛽−1] having a maximum degree of

𝑂 (𝑓𝛽−1 · log𝑛). It is clear that all nodes𝑈0 = 𝑉 are at most 𝛽-1 hops

away from the nodes in𝑈𝛽−1. Next, we utilize a sublinear memory

MPC implementation of a MIS algorithm on𝐺 [𝑈𝛽−1]. The outcome

of this step effectively serves as a 𝛽-ruling set for the original graph

𝐺 . For the pseudocode, refer to Algorithm 3.

Algorithm 3: 𝛽-RulingSet
Input :Graph 𝐺 = (𝑉 , 𝐸) with maximum degree Δ,

parameters 𝑓𝑖 , 𝑡𝑖 , 𝑖 ∈ [1, 𝛽-1]
Output :a 𝛽-ruling set on 𝐺

1 𝑈0 ← 𝑉

2 for i = 1 to 𝛽 - 1 do
3 𝑈𝑖 ← Det2RulingSet(𝐺 [𝑈𝑖−1], 𝑓𝑖 , 𝑡𝑖 )
4 end

Theorem 2. A 𝛽-ruling set of a graph 𝐺 = (𝑉 , 𝐸) can be com-

puted deterministically in the sublinear memory MPC model within

𝑂 (log1/2𝛽−1 Δ log logΔ + log log𝑛) rounds with 𝑂 (𝑚 + 𝑛1+𝜖 ) total
memory.

Proof. Let 𝑓0 = Δ. Let 𝑓𝑖 = 2
𝜖/4 log

2
𝛽 −2𝑖+1+1
2
𝛽 −1 Δ

, and 𝑡𝑖 = log

2
𝑖 −1

2
𝛽 −1 Δ,

where 𝑖 ∈ [1, 𝛽 − 1]. According to Theorem 16 and Theorem 1, the

running time of Algorithm 3 should be:

𝛽−1∑︁
𝑖=1

log 𝑓𝑖−1
𝑡𝑖 · log 𝑓𝑖

· log 𝑡𝑖 log logΔ + log 𝑓𝑖 + log log𝑛

= 𝑂 (log
1

2
𝛽 −1 Δ log logΔ + log log𝑛).

□

4 Fast 𝛽-Ruling Set on Bounded Arboricity
Graphs

Note that Fischer, Giliberti, and Grunau [10] present a deterministic

sublinear MPC algorithm with linear total memory that computes
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an independent set 𝐼 of a graph 𝐺 with 𝜆-arboricity in 𝑂 (log log𝑛)
rounds. The resulting graph 𝐺 \ 𝐼 satisfies deg(𝐺 \ 𝐼 ) ≤ poly(𝜆). It
is clear that deg(𝐺 \Nbr+ (𝐼 )) ≤ poly(𝜆). By applying Theorem 1 to

the graph 𝐺 \ Nbr+ (𝐼 ), we achieve a faster deterministic sublinear

MPC algorithm for computing a 2-ruling set.

Theorem 3. There exists a deterministic sublinear MPC algorithm

that computes a 2-ruling set of a graphwith arboricity 𝜆 in𝑂 (log1/3 𝜆·
log log 𝜆 + log log𝑛) rounds using 𝑂̃ (𝑚 + 𝑛1+𝜖 ) total memory.

Similarly, by applying Theorem 2 to the graph 𝐺 \ Nbr+ (𝐼 ), we
achieve a faster deterministic sublinear MPC algorithm for comput-

ing a 𝛽-ruling set.

Theorem 4. A 𝛽-ruling set of a graph with arboricity 𝜆 can be

computed deterministically in 𝑂 (log1/2𝛽−1 𝜆 log log 𝜆 + log log𝑛)
rounds in the sublinear memory MPC model with 𝑂̃ (𝑚 + 𝑛1+𝜖 ) total
memory.

5 Conclusions and Future Work
In this paper, we improve upon the 2-ruling set result of Giliberti

and Parsaeian [13] by presenting a deterministic 2-ruling set algo-

rithm in the sublinear memory MPCmodel that runs in 𝑂̃ (log1/3 Δ)
rounds. By combining this result with the recent result of Fischer,

Giliberti, and Grunau [10], we also obtain faster, deterministic 2-

ruling set algorithms for sparse (i.e., bounded arboricity) graphs.

Additionally, we present results for 𝛽-ruling sets for 𝛽 > 2 in both

general graphs and sparse graphs. In our view, our technique is

more important than the specific results we obtained. We have

successfully derandomized the “sample-and-gather" approach from

[16], which, as noted by Giliberti and Parsaeian [13], requires fixing

the randomness in future iterations.

This raises an intriguing question: can we apply these ideas to

achieve a faster derandomization of MIS algorithms in the MPC

model? Currently, the fastest (randomized) MIS algorithm in the

sublinear memory MPC model, running in 𝑂̃ (
√︁
logΔ) rounds, is

due to Ghaffari and Uitto [12]. In contrast, the fastest, deterministic

MIS algorithm runs in 𝑂̃ (logΔ) rounds [7]. As observed in [16],

the Ghaffari-Uitto algorithm can also be viewed as an instance of

the “sample-and-gather” approach. Could the ideas presented in

this paper be applied to the Ghaffari-Uitto algorithm to obtain a

deterministic MIS algorithm in the sublinear MPC model that runs

in 𝑜 (logΔ) rounds?
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