
Faster Set Cover in the MPC Model
Hongyan Ji

The University of Iowa

Iowa City, United States

hongyan-ji@uiowa.edu

Shreyas Pai

Indian Institute of Technology Madras

Chennai, India

shreyas@cse.iitm.ac.in

Sriram Pemmaraju

The University of Iowa

Iowa City, United States

sriram-pemmaraju@uiowa.edu

Joshua Sobel

The University of Iowa

Iowa City, United States

joshua-sobel@uiowa.edu

Abstract

The Massively Parallel Computation (MPC) model is a popular

abstraction for large-scale distributed computing. The Set Cover

problem is a classical combinatorial optimization problem that has

a wide variety of applications and generalizes many well-studied

problems such as vertex cover, edge cover, and minimum dominat-

ing set. For a Set Cover instance with a ground set of 𝑛 elements and

a collection of𝑚 sets, we present two𝑂 (log𝑛)-approximation algo-

rithms in the MPC model. Our algorithms run in �̃� (log𝑁)-rounds
in the linear-memory MPC model and in �̃� (log1.5 𝑁) rounds in
the sublinear-memory MPC model, where 𝑁 = 𝑛 +𝑚. These are

the first 𝑂 (log𝑛)-approximation algorithms for Set Cover in this

setting that run in 𝑜 (log2 𝑁) rounds. Our results are obtained by

repurposing the sparsified graph exponentiation technique that

has been successful for the maximal independent set problem in

the MPC model and applying it to a simple, distributed Set Cover

algorithm by Grunau, Mitrović, Rubinfeld, and Vakilian (SODA

2020).

CCS Concepts

• Theory of computation→Massively parallel algorithms;

Distributed algorithms.

Keywords

Parallel Set Cover, Massively Parallel Computing Model, Approxi-

mation

ACM Reference Format:

Hongyan Ji, Shreyas Pai, Sriram Pemmaraju, and Joshua Sobel. 2025. Faster

Set Cover in the MPC Model. In 26th International Conference on Distributed

Computing and Networking (ICDCN 2025), January 04–07, 2025, Hyderabad,

India. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3700838.

3700861

1 Introduction

We present fast algorithms for the SetCover problem in the Mas-

sively Parallel Computation (MPC) model [12, 16, 24, 31]. In the

This work is licensed under a Creative Commons Attribution International

4.0 License.

ICDCN 2025, January 04–07, 2025, Hyderabad, India

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1062-9/25/01

https://doi.org/10.1145/3700838.3700861

SetCover problem we are given a ground set of 𝑛 elements and

a collection of𝑚 sets that jointly cover all elements. The goal is

to find the smallest subcollection of sets that still cover all ele-

ments. SetCover is a classical combinatorial optimization problem

that is a generalization of many well-studied problems like vertex

cover, edge cover, and minimum dominating set. The MPC model

is defined by a set of machines connected via an all-to-all com-

munication network, with each machine having at most𝑊 words

of local memory (one word is 𝑂 (log𝑁) bits). Communication and

computation in this model are synchronous. At the beginning of

the algorithm, the input is distributed across the machines. During

a round, each machine receives up to𝑊 words from all the other

machines, performs local computation, and sends up to𝑊 words to

all the other machines to guide the computation in the next round.

Note that in this model the bandwidth constraint is not associated

with individual edges, but is associated with each machine.

A natural, greedy sequential algorithm provides a ln𝑛 +𝑂 (1)-
approximation [5, 23, 26]. This algorithm is optimal since there

can be no 𝑐 ln𝑛-approximation to SetCover for any 𝑐 < 1 unless

𝑃 = 𝑁𝑃 [11]. The SetCover problem has also been extensively

studied in parallel settings and 𝑂 (log𝑛)-approximation algorithms

are known [3, 30], and these algorithms have served as the basis for

distributed SetCover approximation algorithms [4, 22]. For exam-

ple, in the Congestmodel
1
of distributed computation, the work of

Censor-Hillel and Dory [4] implies an algorithm for the SetCover

problem that guarantees an approximation ratio of 𝑂 (log𝑛), and
takes𝑂 (log2 𝑁) rounds, where 𝑁 = 𝑛+𝑚. This Congest algorithm

succeeds with high probability (whp), i.e., with probability at least

1 − 1/𝑁𝑐
for a constant 𝑐 > 1.

There is an active stream of research that aims to design MPC

algorithms that are significantly faster than their Congest coun-

terparts for various problems [7, 8, 14, 15, 25]. In particular for the

Maximal Independent Set (MIS) problem, the best-known round

complexity (in terms of the number of vertices, 𝑁) in the Congest

model is 𝑂 (log𝑁) [1, 27], whereas in low-memory MPC model it

is �̃� (
√︁
log𝑁)2 [15, 25] and in the linear-memory MPC model it

is 𝑂 (log log𝑁) [14]. But, as far as we know, SetCover seems to

have resisted such improvements thus far and the fastest known

MPC algorithm simply simulates the fastest Congest algorithm

[4] one round at a time, taking 𝑂 (log2 𝑁) rounds. In this paper,

1
The Congest model [29] is a classical distributed model where the input is a graph

𝐺 = (𝑉 , 𝐸) , which also serves as the communication network. Nodes in the graph

are processors with unique IDs from a space whose size is polynomial in |𝑉 | . In each

round, each node can send an𝑂 (log |𝑉 |)-bit message to each of its neighbors.

2
The �̃� (·) notation hides poly log log𝑁 factors.

144

https://orcid.org/0000-0002-6610-844X
https://orcid.org/0000-0003-2409-7807
https://orcid.org/0000-0002-0834-3476
https://orcid.org/0009-0004-7482-0754
https://doi.org/10.1145/3700838.3700861
https://doi.org/10.1145/3700838.3700861
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3700838.3700861
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3700838.3700861&domain=pdf&date_stamp=2025-01-04

ICDCN 2025, January 04–07, 2025, Hyderabad, India H. Ji, S. Pai, S. V. Pemmaraju, J. Sobel

motivated by the speedups obtained for MIS, we show that there

are substantially faster MPC algorithms for SetCover. Specifically,

we prove the following theorem.

Theorem (Informal Main Result). We are given a SetCover

instance with a ground set of 𝑛 elements and a collection of𝑚 sets. Let

𝑁 =𝑚 + 𝑛. We can compute whp an 𝑂 (log𝑛)-approximate solution

to SetCover that runs in

• �̃� (log1.5 𝑁) rounds in the low-memory MPC model and

• �̃� (log𝑁) rounds in the linear-memory MPC model.

1.1 SetCover in the MPC Model

The input to the SetCover problem is a ground set 𝑋 , |𝑋 | = 𝑛

and a collection S = {𝑆1, 𝑆2, . . . , 𝑆𝑚} of subsets 𝑆𝑖 ⊆ 𝑋 satisfying

∪𝑖𝑆𝑖 = 𝑋 . The output of the problem is required to be the smallest

subcollection C ⊆ S such that ∪𝑆∈C𝑆 = 𝑋 . For a SetCover in-

stance, we use s to denote the size of the largest set and t to denote

the largest number of sets an element appears in. A SetCover

instance can be represented as a bipartite graph𝐺 = (𝑋,S, 𝐸) with
node set 𝑋 ∪ 𝑆 of size 𝑁 =𝑚 + 𝑛, and the edge set 𝐸 consisting of

edges {𝑆, 𝑥}, where 𝑥 ∈ 𝑋 , 𝑆 ∈ S, and 𝑥 ∈ 𝑆 .
In the MPC model, the local memory of each machine𝑊 and the

number of machines |M| used are assumed to be sublinear to the

input size 𝐼 . Specifically,𝑊 = 𝐼𝛼 and |M| = 𝐼𝛽 , where 0 < 𝛼 < 1,

and 0 < 𝛽 < 1 are constants. The number of machines |M| is
assumed to be large enough so that we have enough memory to

store the entire input, that is |M| ·𝑊 ≥ 𝐼 . When the input is an

𝑁 -node graph, the difficulty of designing MPC algorithms seems

to be tied to how the memory per machine𝑊 relates to 𝑁 . For

this reason, researchers have separately studied the following three

memory-size regimes. Note that in all three regimes, it is still true

that the local memory parameter𝑊 is sublinear in the total input

size 𝐼 .

Low-Memory MPC: 𝑊 = Θ(𝑁𝛿) local memory per machine

for 0 < 𝛿 < 1.

Linear-Memory MPC: 𝑊 = Θ(𝑁) local memory per ma-

chine.

Superlinear-Memory MPC: Θ(𝑁 1+𝛿) local memory per ma-

chine for 0 < 𝛿 < 1.

It is known that SetCover can be solved (approximately) in 𝑂 (1)
rounds in the superlinear-memory MPC model [20] (see details

below in Section 3). Our paper focuses on the two more challenging

memory regimes, low-memory MPC and linear-memory MPC.

In the MPC model, the standard assumption is that the input

graph edges are distributed arbitrarily among the machines. But

it is convenient to design algorithms assuming that the input is

distributed in a node-centric manner
3
. That is for each node 𝑣 in

the input graph, there is a machine𝑀𝑣 that hosts it and𝑀𝑣 knows

all the neighbors of 𝑣 and the machines that host these neighbors.

3
Given an arbitrary distribution of edges across machines we can convert it to a node-

centric distribution as follows: (1) for each edge {𝑢, 𝑣} create two ordered tuples (𝑢, 𝑣)
and (𝑣,𝑢) and (2) sort the list of tuples by node ID and machine ID so that earliest

tuples in the ordering appear on machines with smallest ID. The result is that the edges

incident on each node are now on the same or two machines with adjacent IDs. It is

easy to go from this intermediate distribution to a node-centric distribution by having

machines with adjacent IDs coordinate with each other. Since we can do sorting in

MPC in constant rounds [16], a node-centric distribution be assumed without loss of

generality.

A machine can host multiple vertices as long as the local memory

constraint is not violated.

An issue that immediately arises in the low-memory MPCmodel,

is that the degree of a node itself can be too large to fit in a single

machine. We deal with this issue in a standard way [2, 15, 25]. We

first replace the edges incident on a node 𝑣 with deg(𝑣) > 𝑁𝛿
by a

virtual, 𝑁𝑂 (𝛿)
-ary balanced tree of depth 𝑂 (1/𝛿). The root of this

tree is 𝑣 and its leaves are the neighbors of 𝑣 . Each intermediate node

is a virtual node with degree 𝑁𝑂 (𝛿)
and thus the neighborhood of

every virtual node can fit in a machine. Communication between

𝑣 and its neighbors occurs via this tree and takes 𝑂 (1/𝛿) rounds,
instead of just 1 round.

2 Technical Contributions

Our starting point is a simple SetCover algorithm by Grunau,

Mitrović, Rubinfeld, and Vakilian [19]. For our purpose, it is best

to view this as a distributed Congest model algorithm. In the

pseudocode (Algorithm 1) below, s is the size of the largest set in
S and t is the maximum number of sets an element appears in.

We use deg𝑖,𝑘 (𝑆) to refer to the number of uncovered elements

in 𝑆 just before iteration 𝑘 in stage 𝑖 . This algorithm produces an

𝑂 (log s)-approximate solution in expectation to SetCover [19].

This algorithm can be implemented “as is” in the linear-memory

MPC model in 𝑂 (log s log t) rounds and in the low-memory MPC

model in 𝑂

(
1

𝛿
log s log t

)
rounds.

While this algorithm is closely related to the nearly-30-year-

old parallel SetCover algorithm of Berger, Rompel, and Shor [3],

it is similar in spirit to other parallel and distributed SetCover

algorithms [4, 22, 30]. All of these algorithms emulate the standard,

sequential greedy SetCover algorithm, but relax the sequential

nature of the greedy algorithm by processing not just one “best”

set, but multiple “good enough” sets in parallel. Specifically, all the

sets 𝑆 for which deg𝑖,𝑘 (𝑆) ≥ s/2𝑖 (in Line 4 Algorithm 1) are good

enough and they are candidates for being added to the set cover.

For example, in Stage 1, all sets with cardinality at least s/2 are

considered good enough. However, adding all of these good enough

sets to the set cover can lead to a very large solution and damage

the approximation factor. So sets are added in log t iterations in
a randomized fashion with geometrically increasing probability.

For example, in iteration 1, sets are added with probability 2/t.
Intuitively, this means that elements that belong to close to t sets
are covered, but only by 𝑂 (1) sets. This allows the algorithm to

double the set selection probability to 4/t in the next iteration and

so on. Adding candidate sets to the set cover in such a way that

no element is covered by more than 𝑂 (1) sets leads to a 𝑂 (log s)-
approximation. The log t iterations in each stage, essentially do

this type of local symmetry breaking in parallel. Our work in this

paper is motivated by the fact that for MIS, which is a classical local

symmetry breaking problem, there are techniques that lead to fast

MPC algorithms.

2.1 Sparsified Graph Exponentiation

A popular technique [13, 15, 21, 28] for speeding up the simulation

of Congest algorithms in “all-to-all” communication models is

graph exponentiation. Themain idea of this technique is that, if every

node 𝑣 knows the state of the 𝑘-neighborhood around 𝑣 , then by

145

Faster Set Cover in the MPC Model ICDCN 2025, January 04–07, 2025, Hyderabad, India

Algorithm 1: SetCover “base algorithm” from [19]

input :Ground set 𝑋 , |𝑋 | = 𝑛, collection of sets

S = {𝑆1, 𝑆2, . . . , 𝑆𝑚}
output :A set cover C ⊆ S

1 for stage 𝑖 ← 1 to log s do
2 for iteration 𝑘 ← 1 to log t do
3 for each set 𝑆 ∈ S in parallel do

4 if deg𝑖,𝑘 (𝑆) ≥ s/2𝑖 then
5 add 𝑆 to the set cover C with probability

2
𝑘/t;

6 end

7 end

8 end

9 end

exchanging this informationwith all nodes, it is possible to learn the

state of the 2𝑘-neighborhood around each node. If the information

exchange in each iteration can be done in 𝑂 (1) rounds, then nodes

can learn the state of their ℓ-neighborhood in𝑂 (log ℓ) rounds. The
main obstacle to obtaining this exponential speedup is that the 𝑘-

neighborhoods around nodes may be so large that exchanging them

may take toomany rounds. However, manyCongest algorithms are

randomized and there is a natural sparsification that occurs, i.e., in

each round only a randomly sampled subset of the nodes are active,

and the rest are silent. This implies that the 𝑘-neighborhoods that

are exchanged only need to involve sparse subgraphs induced by

the sampled nodes. This sparsified graph exponentiation technique

has been applied to the MIS problem in the low-memory MPC

model [15]. Furthermore, a simulation theorem that allows us to

apply sparsified graph exponentiation as a black box was presented

in [25] and applied to the 2-ruling set problem and MIS. In this

paper, we show that the sparsified graph exponentiation technique

can be applied to Algorithm 1 to obtain fast simulations in both the

low-memory and the linear-memory MPC models.

2.2 Sparsified Graph Exponentiation Applied to

SetCover

Our overall plan is to partition the log t iterations in a stage in

Algorithm 1 into batches and simulate each batch fast, using spar-

sified graph exponentiation. Consider a batch with 𝑏 iterations,

𝑘 = 𝐵 + 1, 𝐵 + 2, . . . , 𝐵 + 𝑏 in Stage 𝑖 . At the start of this batch, it is

possible to identify sets that will be “active” in this batch. Call a set

𝑆 a candidate for this batch if deg𝑖,𝐵 (𝑆) ≥ s/2𝑖 . For each candidate

set 𝑆 , we toss 𝑏 coins 𝑐𝑘 (𝑆) for 𝑘 = 𝐵 + 1, 𝐵 + 2, . . . , 𝐵 + 𝑏 with

Prob[𝑐𝑘 (𝑆) = 1] = 2
𝑘/t. Call a set 𝑆 selected in this batch if it is a

candidate for this batch and 𝑐𝑘 (𝑆) = 1 for some 𝐵 + 1 ≤ 𝑘 ≤ 𝐵 + 𝑏.
It is clear from Lines 4-5 in Algorithm 1 that the only sets that can

join the set cover in this batch are those that are selected in this

batch.

Whether a selected set 𝑆 is added to the set cover in this batch

can be determined by examining the 2𝑏-hop neighborhood of 𝑆

in the subgraph induced by selected sets and all elements. We

could get a fast simulation of Algorithm 1 if we can use the graph

exponentiation technique to gather this subgraph at 𝑆 , for every

selected set 𝑆 in 𝑂 (log𝑏) rounds. Unfortunately, this graph is too

large because while we have sparsified the sets (by keeping only

selected sets), we have not sparsified the elements. To explain our

idea of element sparsification, we first describe the role of elements

in the sparsified graph. Consider a candidate set 𝑆 for which 𝑐𝑘 (𝑆) =
1 for some 𝐵 + 1 ≤ 𝑘 ≤ 𝐵 + 𝑏, but 𝑐𝑘 ′ (𝑆) = 0 for all 𝐵 + 1 ≤ 𝑘′ < 𝑘 .

In other words, 𝑘 denotes the first iteration in this batch in which

𝑆 is selected. Even though 𝑆 is selected in iteration 𝑘 , whether it

should be added to the set cover depends on whether 𝑆 is still a

candidate just before iteration 𝑘 , i.e., if deg𝑖,𝑘 (𝑆) ≥ s/2𝑖 . To check

this 𝑆 needs to know the number of uncovered elements it contains

(though not necessarily which elements are uncovered). In order to

sparsify elements, we use the insight that it is enough for 𝑆 to have

a good enough estimate of the number of uncovered elements it

contains. It turns out that it is enough to randomly sample a small

number of elements so that there are roughly Θ(log𝑁) sampled

elements for each iteration in the neighborhood of each candidate

set.

2.3 Main Results

Let 𝑁 = 𝑚 + 𝑛. For the low-memory MPC algorithm, each batch

has a fixed length consisting of Θ(𝛿
√︁
log𝑁 /4) iterations, that can

be simulated using sparsified graph exponentiation in𝑂 (log log𝑁)
rounds whp. This leads to a low-memory MPC model algorithm

that runs in

�̃�

(
1

𝛿2

log s log t√︁
log𝑁

)
= �̃�

(
1

𝛿2
min{

√︁
log s log t, log s

√︁
log t}

)
rounds (see Theorem 4.6). In the linear-memory MPC algorithm,

we simulate the first log t −𝑂 (log log𝑁) iterations of each stage 𝑖

by using the sparsification technique developed in the low-memory

MPC algorithm. The interesting point here is that we do not need

sparsified graph exponentiation because the active graph induced

by the selected candidate sets and sampled elements in the first

log t−𝑂 (log log𝑁) iterations has𝑂 (𝑁) size and can be sent to a sin-
gle machine for local processing. Then the remaining 𝑂 (log log𝑁)
iterations can be executed one by one. Our linear-memory MPC

algorithm has an overall running time of𝑂 (log s · log log𝑁) rounds
whp in the linear-memory MPC model (see Theorem 5.2).

3 Related Work

Harvey, Liaw, and Liu [20] present, what can be viewed as a 𝑂 (1)-
round superlinear-memoryMPC algorithm giving a t-approximation

algorithm for weighted SetCover. More precisely, their algorithm

runs in𝑂 ((𝑐/𝜇)2) rounds, where the space per machine is assumed

to be Θ(t · 𝑛1+𝜇).
It is also worth mentioning that Grunau, Mitrović, Rubinfeld,

and Vakilian [19] use their base algorithm to design algorithms

in Local Computation Algorithms (LCA) model with small query

complexity. In the LCA model one can perform queries on the input

and learn about a small portion of the output. For example, for

SetCover in the LCA model, we want to perform as few queries as

possible to find out if a set 𝑆 belongs to the approximate set cover

solution. Some of the techniques used in the present paper (e.g.,

sparsified graph exponentiation) for SetCover in the MPC model

146

ICDCN 2025, January 04–07, 2025, Hyderabad, India H. Ji, S. Pai, S. V. Pemmaraju, J. Sobel

may be implicit in [19] and are used to reduce query complexity in

LCA. However, none of the results in [19] are in the MPC model.

In a recent paper, Götte, Kolb, Scheideler, and Werthmann [17]

present a SetCover approximation algorithm in the beepingmodel
4

and also presents a variant that has low message complexity in the

Congest model. Even though this algorithm has many features

specific to the beeping model, at its core it is similar to the base

algorithm in [19]. It is important to note that even though our

work is in the MPC model, [19] is in the LCA model, and [17] is

in the beeping and Congest models, the common goal in all of

these is to reduce the message complexity of the algorithms without

worsening the quality of the approximation.

Note added to the camera-ready version: As the current paper

was being reviewed, we were alerted to a paper by Dhulipala, Dinitz,

Łącki, and Mitrović posted on arxiv [10] (and to appear in DISC

2024 [9]), one of whose results is very similar to our result. In fact,

the “new, surprisingly simple” algorithm referred to in the abstract

of this paper [10] seems quite similar to the “base algorithm” from

[19] that we refer to. We note that [10] uses this algorithm as

a starting point for deriving multiple algorithms (with different

approximation factors), not just in the MPC model, but also in the

PRAM model.

4 Low-Memory MPC Algorithm

Fix an arbitrary stage 𝑖 . The log t iterations in the stage are par-

titioned into batches, each batch consisting of 𝛿
√︁
log𝑁 /4 itera-

tions. To be precise, let 𝑃 𝑗 = 𝛿
√︁
log𝑁 /4 · (𝑗 − 1) denote batch

boundaries. Then batch 𝑗 , for 𝑗 = 1, 2, . . . consists of iterations

𝑘 = 𝑃 𝑗 + 1 through 𝑘 = 𝑃 𝑗+1. Recall that a set 𝑆 is called a candi-

date for batch 𝑗 if deg𝑖,𝑃 𝑗+1 (𝑆) ≥ s/2𝑖 . Also recall that each can-

didate 𝑆 tosses 𝛿
√︁
log𝑁 /4 coins 𝑐𝑘 (𝑆) for 𝑃 𝑗 + 1 ≤ 𝑘 ≤ 𝑃 𝑗+1 with

Prob[𝑐𝑘 (𝑆) = 1] = 2
𝑘/t to mimic the random selection of candi-

dates in Line 5 in Algorithm 1. A candidate set 𝑆 is said to be selected

if 𝑐𝑘 (𝑆) = 1 for some 𝑃 𝑗 + 1 ≤ 𝑘 ≤ 𝑃 𝑗+1. A candidate set 𝑆 is said to

be selected in iteration ℓ , 𝑃 𝑗 +1 ≤ ℓ ≤ 𝑃 𝑗+1 if 𝑐ℓ (𝑆) = 1 and 𝑐𝑘 (𝑆) = 0

for all 𝑃 𝑗 + 1 ≤ 𝑘 < ℓ . As mentioned in the previous section, we

just need enough not-yet-covered elements to participate in the

algorithm in batch 𝑗 to obtain an up-to-date estimate of the number

of not-yet-covered elements in each selected candidate set. For this

purpose, we sample each element that is not covered by the start

of batch 𝑗 with probability 2𝑐 log𝑁 · 2𝑖/s independently for each

iteration in batch 𝑗 , for some constant 𝑐 that will be fixed later. This

is done so that we can get independent estimates of the degree of

each iteration.

Let 𝐴 = (S𝐴, 𝑋𝐴, 𝐸𝐴) be the bipartite graph with node set S𝐴 ∪
𝑋𝐴 , where S𝐴 is the set of selected candidate sets in batch 𝑗 and

𝑋𝐴 is the set of sampled elements in batch 𝑗 and the edge set

𝐸𝐴 consists of edges {𝑆, 𝑒}, where 𝑆 ∈ S𝐴 , 𝑒 ∈ 𝑋𝐴 and 𝑒 ∈ 𝑆 .

We call 𝐴 the active graph for batch 𝑗 because it includes all sets

and elements that might be active in batch 𝑗 . Let 𝐵𝐴 (𝑣, 𝑟) be the
subgraph of 𝐴 induced by nodes that are at most 𝑟 hops from

𝑣 ∈ 𝑆𝐴 ∪ 𝑋𝐴 . Each node𝑤 in 𝐵𝐴 (𝑣, 𝑟) representing a set is labeled

with the following information: (a) deg𝑖,𝑃 𝑗+1 (𝑤) and (b) the coin

4
In the beeping model nodes communicate with beeps. In the specific version of the

beeping model in [17], in each round a node can either listen or beep. If, in a round, a

node 𝑣 is listening and some subset of its neighbors beep, then 𝑣 hears a beep.

toss sequence (𝑐𝑃 𝑗+1 (𝑤), 𝑐𝑃 𝑗+2 (𝑤), . . . , 𝑐𝑃 𝑗+1 (𝑤)). The algorithm

that simulates batch 𝑗 in stage 𝑖 is described in Algorithm 2.

Algorithm 2: Fast simulation of batch 𝑗 in stage 𝑖 in the

low-memory MPC model

1 Every set that joined the set cover in the previous batch

informs all of its elements;

2 Every element that got covered in the previous batch

informs all sets it belongs to;

3 Every set 𝑆 computes deg𝑖,𝑃 𝑗+1 (𝑆) and sets 𝑆 with

deg𝑖,𝑃 𝑗+1 (𝑆) ≥ s/2𝑖 become candidates;

4 Every candidate set 𝑆 tosses 𝛿
√︁
log𝑁 /4 biased coins

(𝑐𝑃 𝑗+1 (𝑆), 𝑐𝑃 𝑗+2 (𝑆), . . . , 𝑐𝑃 𝑗+1 (𝑆)) where
Prob[𝑐𝑘 (𝑆) = 1] = 2

𝑘/t for 𝑃 𝑗 + 1 ≤ 𝑘 ≤ 𝑃 𝑗+1;
5 Every element not covered in previous batches samples

itself independently with probability 2𝑐 log𝑁 · 2𝑖/s in
group 𝑘 for 𝑃 𝑗 + 1 ≤ 𝑘 ≤ 𝑃 𝑗+1 ;

6 For every selected candidate set 𝑆 , gather 𝐵𝐴 (𝑆, 𝛿
√︁
log𝑁 /2)

at node 𝑆 ;

7 Using 𝐵𝐴 (𝑆, 𝛿
√︁
log𝑁 /2) every selected candidate set 𝑆

computes 𝐶 (𝑆), the subset of sampled elements in 𝑆 ;

8 Using 𝐵𝐴 (𝑆, 𝛿
√︁
log𝑁 /2) every candidate set 𝑆 selected in

iteration ℓ , 𝑃 𝑗 + 1 ≤ ℓ ≤ 𝑃 𝑗+1, computes 𝐶𝑢 (𝑆), the subset
of sampled neighbors in group ℓ not-yet-covered after ℓ − 1
iterations;

9 Every candidate 𝑆 for which

|𝐶𝑢 (𝑆) |
|𝐶 (𝑆) | · deg𝑖,𝑃 𝑗+1 (𝑆) ≥

s
2
𝑖

joins the set cover.

As informally described in the introduction, for a set 𝑆 that is

selected in iteration ℓ , 𝑃 𝑗 + 1 ≤ ℓ ≤ 𝑃 𝑗+1 (i.e., in batch 𝑗), we

use a sample of elements to estimate deg𝑖,ℓ (𝑆) and determine if

deg𝑖,ℓ (𝑆) ≥ s/2𝑖 . The following lemma shows that the estimator

used in Line 9 of Algorithm 2 for deg𝑖,ℓ (𝑆) is good enough. Specifi-

cally, set 𝑆 may be incorrectly classified as a candidate when the

number of not-yet-covered elements in 𝑆 is very close, i.e., within a[
1

(1+𝜖) ,
1

(1−𝜖)

]
factor of the Stage 𝑖 threshold of s/2𝑖 for an arbitrar-

ily small constant 𝜖 . However, this only worsens the approximation

factor of the algorithm by a factor that depends on 𝜖 .

Lemma 4.1. Suppose that 𝑆 is a candidate selected in iteration ℓ ,

𝑃 𝑗 + 1 ≤ ℓ ≤ 𝑃 𝑗+1. Let𝐶 (𝑆) be the subset of 𝑆 of sampled elements in

batch 𝑗 . Let 𝐶𝑢 (𝑆) ⊆ 𝐶 (𝑆) be the set of sampled neighbors of 𝑢 that

remain uncovered at the end of iteration ℓ − 1. Then, for any constant
𝜖 > 0, whp,(
|𝐶𝑢 (𝑆) |
|𝐶 (𝑆) |

)
· deg𝑖,𝑃 𝑗+1 (𝑆) ≥

s
2
𝑖

=⇒ deg𝑖,ℓ (𝑆) ≥
s

2
𝑖 (1 + 𝜖)

,(
|𝐶𝑢 (𝑆) |
|𝐶 (𝑆) |

)
· deg𝑖,𝑃 𝑗+1 (𝑆) <

s
2
𝑖

=⇒ deg𝑖,ℓ (𝑆) <
s

2
𝑖 (1 − 𝜖)

.

Proof. Let 𝑈 denote the set of not-yet-covered elements in 𝑆

just before the start of the batch. Thus, deg𝑖,𝑃 𝑗+1 (𝑆) = |𝑈 |. Since 𝑆 is

147

Faster Set Cover in the MPC Model ICDCN 2025, January 04–07, 2025, Hyderabad, India

a candidate before the start of this batch, |𝑈 | ≥ s/2𝑖 and therefore

E[|𝐶 (𝑆) |] = (2𝑐 log𝑁 · 2𝑖/s) · |𝑈 | ≥ 2𝑐 log𝑁 and by Chernoff

bounds

Prob

[
| |𝐶 (𝑆) | − E[|𝐶 (𝑆) |] | ≥ 𝜖

4

· E[|𝐶 (𝑆) |]
]
≤ 1

𝑁 3
(1)

for large enough constant 𝑐 . Furthermore, E[|𝐶𝑢 (𝑆) |] = (2𝑐 log𝑁 ·
2
𝑖/s) · deg𝑖,ℓ (𝑆). We partition the rest of the proof into two cases

depending on how large deg𝑖,ℓ (𝑆) is relative to s/2𝑖+1.
Case (1): deg𝑖,ℓ (𝑆) ≥ s/2𝑖+1. In this case, E[|𝐶𝑢 (𝑆) |] ≥ 𝑐 log𝑁

and by Chernoff bounds, for large enough constant 𝑐 ,

Prob

[
| |𝐶𝑢 (𝑆) | − E[|𝐶𝑢 (𝑆) |] | ≥

𝜖

4

· E[|𝐶𝑢 (𝑆) |]
]
≤ 1

𝑁 3
. (2)

Let E1 denote the event | |𝐶 (𝑆) | −E[|𝐶 (𝑆) |] | < 𝜖
4
·E[|𝐶 (𝑆) |]

and similarly let E2 denote the event | |𝐶𝑢 (𝑆) |−E[|𝐶𝑢 (𝑆) |] | <
𝜖
4
· E[|𝐶𝑢 (𝑆) |]. Then, by bounds in (1) and (2), Prob[E1 ∧
E2] ≥ 1 − 2/𝑁 3 ≥ 1 − 1/𝑁 2

for 𝑁 ≥ 2. Therefore, with

probability at least 1 − 1/𝑁 2(
1 − 𝜖/4
1 + 𝜖/4

)
·
deg𝑖,ℓ (𝑆)
|𝑈 | ≤ |𝐶𝑢 (𝑆) ||𝐶 (𝑆) | ≤

(
1 + 𝜖/4
1 − 𝜖/4

)
·
deg𝑖,ℓ (𝑆)
|𝑈 | . (3)

For 𝜖 ≤ 1, the inequalities in (3) imply that with probability

at least 1 − 1/𝑁 2
,

(1 − 𝜖) · deg𝑖,ℓ (𝑆) ≤
|𝐶𝑢 (𝑆) |
|𝐶 (𝑆) | · |𝑈 | ≤ (1 + 𝜖) · deg𝑖,ℓ (𝑆) .

Case (2): deg𝑖,ℓ (𝑆) < s/2𝑖+1. In this case, E[|𝐶𝑢 (𝑆) |] < 𝑐 log𝑁 .

Therefore, by Chernoff bounds Prob[|𝐶𝑢 (𝑆) | ≥ (3𝑐/2) log𝑁] ≤
1/𝑁 3

. The bound in (1) also implies that Prob[|𝐶 (𝑆) | ≤
((3𝑐/2) log𝑁 · 2𝑖/𝑠) · |𝑈 |] ≤ 1/𝑁 3

. Therefore, using a sim-

ilar reasoning as in Case 1, with probability at least 1 −
1/𝑁 2

, both the events |𝐶𝑢 (𝑆) | < (3𝑐/2) log𝑁 and |𝐶 (𝑆) | >
((3𝑐/2) log𝑁 · 2𝑖/𝑠) · |𝑈 | occur. This implies that with prob-

ability at least 1 − 1/𝑁 2
,

|𝐶𝑢 (𝑆) |
|𝐶 (𝑆) | · |𝑈 | <

(3𝑐/2) log𝑁
((3𝑐/2) log𝑁 · 2𝑖/𝑠) · |𝑈 |

· |𝑈 | = 𝑠

2
𝑖
.

To finish the proof we separately consider the two parts in the

statement of the lemma.

• If (|𝐶𝑢 (𝑆) |/|𝐶 (𝑆) |) · deg𝑖,𝑃 𝑗+1 (𝑆) ≥ s/2𝑖 , then with probabil-

ity at least 1 − 1/𝑁 2
Case (1) holds. This is because if Case

(2) were to hold, then with probability at least 1 − 1/𝑁 2
,

(|𝐶𝑢 (𝑆) |/|𝐶 (𝑆) |) · |𝑈 | < s/2𝑖 . Thus, whp deg𝑖,ℓ (𝑆) ≥ s/2𝑖+1
and therefore (|𝐶𝑢 (𝑆) |/|𝐶 (𝑆) |) · deg𝑖,𝑃 𝑗+1 (𝑆) ≤ (1 + 𝜖) ·
deg𝑖,ℓ (𝑆). Hence, deg𝑖,ℓ (𝑆) ≥ s/2(1 + 𝜖).
• If (|𝐶𝑢 (𝑆) |/|𝐶 (𝑆) |) · deg𝑖,𝑃 𝑗+1 (𝑆) ≥ s/2𝑖 then either Case

(1) or (2) above may hold. If Case (1) holds and deg𝑖,ℓ (𝑆) ≥
s/2𝑖+1 then (|𝐶𝑢 (𝑆) |/|𝐶 (𝑆) |)·deg𝑖,𝑃 𝑗+1 (𝑆) ≥ (1−𝜖)·deg𝑖,ℓ (𝑆)
and therefore deg𝑖,ℓ (𝑆) ≤ s/2𝑖 (1 − 𝜖). If Case (2) holds, then
deg𝑖,ℓ (𝑆) < s/2𝑖+1 < s/2𝑖 (1 − 𝜖).

□

The lemma above shows that the proposed estimator for deg𝑖,ℓ (𝑆)
is good enough. To compute this estimator, a selected candidate

set 𝑆 needs to know the quantities |𝐶𝑢 (𝑆) |, |𝐶 (𝑆) |, and deg𝑖,𝑃 𝑗+1 (𝑆).
The latter two quantities are available at the start of the batch just by

communicating with neighbors. The following lemma shows that

𝐶𝑢 (𝑆) can be computed via local computation on 𝐵𝐴 (𝑆, 𝛿
√︁
log𝑁 /2).

Lemma 4.2. Suppose that a candidate node 𝑆 is selected in iteration

ℓ , 𝑃 𝑗 + 1 ≤ ℓ ≤ 𝑃 𝑗+1. Further suppose that machine hosting set 𝑆

knows 𝐵𝐴 (𝑆, 𝛿
√︁
log𝑁 /2). Then, the machine can determine whp via

local computation the set 𝐶𝑢 (𝑆) of sampled neighbors who remain

uncovered after ℓ − 1 iterations.

Proof. Let𝑀𝑆 denote the machine hosting set 𝑆 . We will show

by induction that for any ℎ, 1 ≤ ℎ ≤ ℓ , machine𝑀𝑆 can perform lo-

cal computation on 𝐵𝐴 (𝑆, 𝛿
√︁
log𝑁 /2) to determine for any selected

candidate set 𝑌 in 𝐵𝐴 (𝑆, 2(ℓ − ℎ)) whp, the set 𝐶𝑢 (𝑌) of sampled

neighbors of 𝑌 who remain uncovered after 𝑘 iterations for any

𝑘 ≤ ℎ − 1. Plugging ℎ = ℓ into this claim leads to the lemma.

Base case: ℎ = 1. Consider a selected candidate set 𝑌 ∈ 𝐵𝐴 (𝑆, 2(ℓ −
1)). Let𝐶 (𝑌) denote the set of sampled neighbors of𝑌 . After ℎ−1 =
0 iterations all nodes in 𝐶 (𝑌) remain uncovered. Since all elements

in𝐶 (𝑌) belong to 𝐵𝐴 (𝑆, 2(ℓ −1) +1) ⊆ 𝐵𝐴 (𝑆, 𝛿
√︁
log𝑁 /2), machine

𝑀𝑆 can compute the set 𝐶𝑢 (𝑌) = 𝐶 (𝑌) from 𝐵𝐴 (𝑆, 𝛿
√︁
log𝑁 /2)

using the first group of sampled elements.

Inductive step:We assume the inductive claim is true after itera-

tionℎ. In other words, for any selected candidate set𝑌 ∈ 𝐵𝐴 (𝑆, 2(ℓ−
ℎ)) and 𝑘 ≤ ℎ − 1, machine𝑀𝑆 can compute the set 𝐶𝑢 (𝑌) of sam-

pled neighbors of 𝑌 who remain uncovered after 𝑘 iterations via

local computation on 𝐵𝐴 (𝑆, 𝛿
√︁
log𝑁 /2) using the first ℎ − 1 groups

of sampled elements. Therefore, for each such 𝑌 and 𝑘 , machine𝑀𝑆

knows if (|𝐶𝑢 (𝑌) |/|𝐶 (𝑌) |) · deg𝑖,𝑘 (𝑌) ≥ s/2𝑖 and if 𝑌 is selected in

iteration 𝑘 + 1. This implies that for each such 𝑌 and 𝑘 , machine𝑀𝑆

knows if 𝑌 joins the set cover in iteration 𝑘 + 1. Now consider any

sampled element 𝑥 ∈ 𝐵𝐴 (𝑆, 2(ℓ−ℎ)−1) belonging to a group 𝑘′ ≤ ℎ.

All neighbors of 𝑥 that are selected candidates are in 𝐵𝐴 (𝑆, 2(ℓ−ℎ)).
Therefore, for each 𝑘 ≤ ℎ − 1, machine𝑀𝑆 can figure out via local

computation on 𝐵𝐴 (𝑆, 𝛿
√︁
log𝑁 /2) if 𝑥 is covered after 𝑘′ = 𝑘 + 1

iterations have been completed. This implies that for any selected

candidate set 𝑌 ∈ 𝐵𝐴 (𝑆, 2(ℓ − ℎ) − 2) = 𝐵𝐴 (𝑆, 2(ℓ − (ℎ + 1))) and
any 𝑘′ ≤ ℎ, machine 𝑀𝑆 can compute 𝐶𝑢 (𝑌), the set of sampled

neighbors in group 𝑘′ that remain uncovered after 𝑘′ iterations.
This establishes the inductive hypothesis after iteration ℎ + 1. □

In the next lemma, we show an upper bound on the maximum

degree of the active graph. Subsequently, we use this (in Lemma 4.4)

to show that every 𝛿
√︁
log𝑁 /2-neighborhood in the active graph

has size 𝑂 (𝑁𝛿/2).

Lemma 4.3. At the start of batch 𝑗 , whp every not-yet-covered

element 𝑥 has at most t · ln𝑁 /2𝑃 𝑗
candidate neighbors.

Proof. Consider an element 𝑥 ∈ 𝑋 that is not yet covered at

the start of batch 𝑗 . Suppose 𝑥 has more than t · ln𝑁 /2𝑃 𝑗
candidate

neighbors at the start of batch 𝑗 . Each of these candidates is selected

with probability 2
𝑃 𝑗+1/t in batch 𝑗 − 1. Then the probability that

none of these candidates are selected in batch 𝑗 is(
1 − 2

𝑃 𝑗+1

t

)t ln𝑁 /2𝑃𝑗
≤ exp(2 ln𝑁) = 1

𝑁 2
.

Thus with probability at least 1−1/𝑁 2
such an element 𝑥 is covered

in batch 𝑗 . By the union bound, with probability at least 1 − 1/𝑁

148

ICDCN 2025, January 04–07, 2025, Hyderabad, India H. Ji, S. Pai, S. V. Pemmaraju, J. Sobel

every element 𝑥 ∈ 𝑋 not-yet-covered at the start of batch 𝑗 has at

most t · ln𝑁 /2𝑃 𝑗+1
candidate neighbors. □

Lemma 4.4. For any node 𝑥 ∈ 𝐴, the number of edges in the ball

𝐵𝐴 (𝑥, 𝛿
√︁
log𝑁 /2) is bounded by 𝑂 (𝑁𝛿/2) whp.

Proof. By Lemma 4.3 each not-yet-covered element has at most

t ln𝑁 /2𝑃 𝑗
neighboring candidates with high probability. Further-

more, each candidate set is selected with probability at most 2 ·
2
𝑃 𝑗+1/t. Thus, in expectation, a not-yet-covered element has at

most 2 ln𝑁 · 2𝛿
√
log𝑁 /4

selected candidate neighbors. By Chernoff

bounds, a not-yet-covered node has more than (6 log𝑁)2 ln𝑁 ·
2
𝛿
√
log𝑁 /4

with probability at most 2
−6 log𝑁 = 1/𝑁 6

. Thus, whp,

every not-yet-covered element has atmost (6 log𝑁)2 ln𝑁 ·2𝛿
√
log𝑁 /4 =

𝑂 (log2 𝑁 · 2𝛿
√
log𝑁 /4) selected candidate neighbors.

On the other hand, every not-yet-covered element 𝑒 is sampled

with probability 2𝑐 log𝑁 · 2𝑖/s. At the beginning of stage 𝑖 the num-

ber of uncovered elements of any set not currently in the set cover

is at most s/2𝑖−1, since any set with more not-yet-covered elements

would have been a candidate in the previous stage and was either

added to the set cover or now has fewer than s/2𝑖−1 uncovered
elements. Thus, the expected number of sampled not-yet-covered

elements in any candidate set in this batch is 4𝑐 log𝑁 . By Chernoff

bounds, the probability that a set not in the current set cover con-

tains more than 24𝑐 log𝑁 sampled uncovered elements is less than

2
−24𝑐 log𝑁 = 1/𝑁 24𝑐

. Thus whp every set not in the current set

cover has at most 24𝑐 log𝑁 sampled uncovered elements, from one

group. And since we independently sample a group of elements

for each iteration in the batch, whp every set not in the current set

cover has at most 24𝑐 log1.5 𝑁 sampled uncovered elements overall.

Combining the previous two results, the degree of the active

graph is bounded by max{𝑂 (log2 𝑁 · 2𝛿
√
log𝑁 /4),𝑂 (log1.5 𝑁)} =

𝑂 (log2 𝑁 · 2𝛿
√
log𝑁 /4) whp. Next, we can bound the number of

edges in 𝐵𝐴 (𝑥, 𝛿
√︁
log𝑁 /2) by (𝐶 log

2 𝑁 · 2𝛿
√
log𝑁 /4)𝛿

√
log𝑁 /2

for

some constant 𝐶 . This quantity is bounded above by 𝑂 (𝑁𝛿/2).
□

Lemma 4.5. Suppose that the total memory, in all machines, is

Ω(𝑁 1+𝛿). Then, for every set 𝑆 ∈ S𝐴 , the subgraph𝐵𝐴 (𝑆, 𝛿
√︁
log𝑁 /2)

can be gathered at 𝑆 (in parallel) in 𝑂 (log log𝑁) rounds.

Proof. Suppose the total memory is Ω(𝑁 1+𝛿). In that case, there
are Ω(𝑁) machines (since per machine memory is 𝑂 (𝑁𝛿)) and
therefore we can assume without loss of generality that every ma-

chine hosts𝑂 (1) sets or elements. For a node 𝑣 in the active graph𝐴,

let𝑀𝑣 denote the machine hosting 𝑣 . Suppose that each machine𝑀𝑣

knows 𝐵𝐴 (𝑣, 𝑝) for some 0 ≤ 𝑝 ≤ 𝛿
√︁
log𝑁 . Each machine𝑀𝑣 then

sends 𝐵𝐴 (𝑣, 𝑝) to machine𝑀𝑢 for every node 𝑢 in 𝐵𝐴 (𝑣, 𝑝). After
this communication is completed, each machine𝑀𝑣 can construct

𝐵𝐴 (𝑣, 2𝑝) from the information it has received because 𝐵𝐴 (𝑣, 2𝑝)
is contained in the union of 𝐵𝐴 (𝑢, 𝑝) for all 𝑢 in 𝐵𝐴 (𝑣, 𝑝).

We now argue that this communication can be performed in

𝑂 (1) rounds. First, note that by Lemma 4.4, the size of 𝐵𝐴 (𝑣, 𝑝) is
bounded above by𝑂 (𝑁𝛿/2). This also means that 𝐵𝐴 (𝑣, 𝑝) contains
𝑂 (𝑁𝛿/2) nodes. Therefore,𝑀𝑣 needs to send a total of 𝑂 (𝑁𝛿/2) ×
𝑂 (𝑁𝛿/2) = 𝑂 (𝑁𝛿) words. A symmetric argument shows a 𝑂 (𝑁𝛿)

bound on the number of words𝑀𝑣 receives. Since𝑂 (𝑁𝛿) words can
be sent and received in each communication round by a machine

this communication can be completed in 𝑂 (1) rounds. □

Theorem 4.6. There is a low-memory MPC algorithm that runs in

�̃�

(
1

𝛿2
log s log t/

√︁
log𝑁

)
rounds and produces an𝑂 (log s)-approximate

set cover whp. This algorithm needs 𝑂 (𝐼 + 𝑁 1+𝛿) total memory.

Proof. The purpose of Line 1 in Algorithm 2 is for every ele-

ment to know if it is covered by a set added to the set cover in the

previous batch. This boolean information can be aggregated up the

depth-𝑂 (1/𝛿)-tree representing the neighborhood of each element.

Hence, Line 1 can be implemented in 𝑂 (1/𝛿) rounds. The purpose
of Line 2 in Algorithm 2 is for every set 𝑆 not in the set cover to

know deg𝑖,𝑃 𝑗+1 (𝑆), i.e., the number of elements in 𝑆 not-yet-covered

at the end of the previous batch. This count can be aggregated up

the depth-𝑂 (1/𝛿)-tree representing the neighborhood of each set.

Hence, Line 2 can be implemented in 𝑂 (1/𝛿) rounds. Lines 3-5
involve local computation only. Line 6 is the graph exponentiation

step, which takes 𝑂 (log log𝑁) rounds in the low-memory MPC

model according to Lemma 4.5. Lines 7-9 only require local computa-

tion. Hence, Algorithm 1, which simulates a batch of iterations, can

be implemented in𝑂 (1/𝛿+log log𝑁) rounds. Each batch consists of
𝛿
√︁
log𝑁 /4 iterations and thus there are 4 log t/𝛿

√︁
log𝑁 batches in

a stage. This implies a total of𝑂

(
1

𝛿2
log t log log𝑁 /

√︁
log𝑁

)
rounds

per stage and thus a total of �̃�

(
1

𝛿2
log s log t/

√︁
log𝑁

)
rounds.

The fact that Algorithm 1 is an 𝑂 (log 𝑠)-approximation (in ex-

pectation) is shown in [18, 19]. Algorithm 2 simulates Algorithm

1 faithfully expects that a set 𝑆 may be incorrectly classified as a

candidate when the number of not-yet-covered elements in 𝑆 is

very close to the Stage 𝑖 threshold of s/2𝑖 . Specifically, in Algorithm

1 a set 𝑆 is a candidate in iteration ℓ in Stage 𝑖 if deg𝑖,ℓ (𝑆) ≥ s/2𝑖 .
But, as per Lemma 4.1, 𝑆 may be classified as a candidate even if

deg𝑖,ℓ (𝑆) is slightly smaller, i.e., in the range

[
s

2
𝑖 (1+𝜖) ,

s
2
𝑖

)
. Similarly,

𝑆 may be may be classified as a non-candidate even if deg𝑖,ℓ (𝑆) is
slightly larger, i.e., in the range

[
s
2
𝑖 ,

s
2
𝑖 (1−𝜖)

)
. This approximation

candidate-estimation only worsens the approximation factor by a

factor that depends on 𝜖 , which we can take to be an arbitrarily

small constant.

The 𝑂 (log s)-approximation factor holds only in expectation.

We can make the 𝑂 (log s)-approximation hold whp (with a larger

constant) using the standard technique of running𝑂 (log𝑁) copies
of the algorithm and returning the smallest solution. Standard Cher-

noff bounds show that the minimum of these solutions has an ap-

proximation ratio 𝑂 (log s) whp. This increases our memory usage

(both local and total) by a factor of log𝑁 but this can be absorbed in

the big-Oh notation by reducing 𝛿 to 0.9𝛿 since log𝑁 = 𝑂 (𝑁 0.1𝛿).
This only increases the round complexity by a constant factor. □

4.1 Linear Total Memory

In this section, we describe how to modify Algorithm 2 to get linear

total memory. This comes at the cost of a slightly higher round

complexity compared to Theorem 4.6.

149

Faster Set Cover in the MPC Model ICDCN 2025, January 04–07, 2025, Hyderabad, India

Theorem 4.7. There is a low-memory MPC algorithm that runs

in �̃�

(
1

𝛿2

√︁
log s log t

)
rounds and produces an 𝑂 (log s)-approximate

set cover whp. This algorithm needs �̃� (𝐼) total memory.

Proof. To use less total memory, we modify Algorithm 2 so

that each batch in stage 𝑖 executes 𝑅 = 𝛿
√︁
log s/4 iterations. There-

fore, the size of the active graph in Lemma 4.4 is bounded above

by 𝑂 (s𝛿/2) whp. In stage 𝑖 , only candidates with degree in range

[s/2𝑖 , s/2𝑖−1) are active. Therefore until stage (1 − 𝛿/2) log s we
can charge the active graph collected at an active set 𝑆 to unique

input graph edges for each batch since deg(𝑆) ≥ s𝛿/2. These stages
are simulated in 𝑂

(
1

𝛿2
log t

√︁
log s

)
rounds. Now we want to simu-

late the remaining (𝛿/2) log s stages. We shrink the batch size to

𝑅/2 and this allows us to simulate an additional (𝛿/4) log s stages
while still charging the active graph (of size 𝑂 (s𝛿/4)) to unique

input edges for each batch. We keep halving the batch size at most

𝑂 (log log s) times where we simulate (𝛿/2𝑡+1) log s stages with
batch size 𝑅/2𝑡 until we simulate all stages. This simulation runs in

�̃�

(
1

𝛿2

∑log log s
𝑡=1

𝛿2𝑡 log s log t/2𝑡+1𝑅
)
= �̃�

(
1

𝛿2
log t

√︁
log s

)
rounds.

Each input graph edge is charged a most𝑂 (log s log t) times so the

total memory used is �̃� (𝐼). □

5 Exponentially Faster Simulation in

Linear-Memory MPC

In this section we will show that in the linear-memory MPC model

the simulation from the previous section can be substantially sim-

plified and accelerated, leading to an algorithm that runs 𝑂 (log s ·
log log𝑁) rounds whp. Our main insight is that the active graph

induced by a large number of initial iterations in a stage has size

𝑂 (𝑁). This implies that these initial iterations can be simulated in

constant rounds in the linear-memory MPC model.

In particular, for any stage 𝑖 consider iterations 1 to log t −
2 log log𝑁 . Each candidate has a probability

∑log t−3 log log𝑁
1

2
𝑘/t ≤

2 · 2log t−3 log log𝑁 /t ≤ 2/(log3 𝑁) of being selected. In addition to

selecting candidates, each element that is not covered by the start

of batch 𝑗 in stage 𝑖 is sampled independently in log t − 3 log log𝑁
groups, each with probability 2𝑐 log𝑁 · 2𝑖/s, for some constant 𝑐 .

Let 𝐴 = (S𝐴, 𝑋𝐴, 𝐸𝐴) be the active graph for stage 𝑖 and batch 𝑗

which is the bipartite graph with node set S𝐴∪𝑋𝐴 , where S𝐴 is the

set of selected candidate sets and 𝑋𝐴 is the set of sampled elements

and the edge set 𝐸𝐴 consists of edges {𝑆, 𝑒}, where 𝑆 ∈ S𝐴, 𝑒 ∈ 𝑋𝐴 ,

and 𝑒 ∈ 𝑆 .

Lemma 5.1. The active graph𝐴 for iterations 1 to log t−3 log log𝑁
of stage 𝑖 has 𝑂 (𝑁 /log𝑁) edges whp.

Proof. Each candidatewill select itself in the first log t−3 log log𝑁
iterations with probability at most 2/log3 𝑁 . Therefore, the ex-

pected number of selected candidates that is E[|S𝐴 |] ≤ 2𝑁 /log2 𝑁 .

Since the candidates select themselves independently, we can use

Chernoff bound to say that whp, |S𝐴 | ≤ 2𝑐𝑁 /log2 𝑁 .

Now since we are in stage 𝑖 , each set has degree at most s/2𝑖
and each element samples itself independently, in log t−3 log log𝑁
groups, each with probability 2𝑐 log𝑁 · 2𝑖/s. Therefore, using Cher-
noff bound, we can say thatwhp, every candidate atmost𝑂 (log𝑁 log t) =

𝑂 (log2 𝑁) sampled neighbors. Therefore, |𝐸𝐴 | ≤ |S𝐴 |·𝑂 (log2 𝑁) ≤
𝑂 (𝑁 /log𝑁) whp, and the lemma holds. □

We are now ready to prove the main result of this section.

Theorem 5.2. There is a linear-memory MPC algorithm that runs

in𝑂 (log s · log log𝑁) rounds and produces an𝑂 (log s)-approximate

set cover whp. This algorithm uses a total of �̃� (𝐼) memory.

Proof. We simulate iterations 1 to log t−3 log log𝑁 of stage 𝑖 by

having each machine compute the local part of the active graph 𝐴

and send it to a single leader machine. Then the leader machine can

simulate the log t − 3 log log𝑁 iterations locally using Algorithm 2

and send to each set and element its local outcome. This requires

𝑂 (1) rounds.
The remaining 3 log log𝑁 iterations can be simulated one by one,

and then we move on to stage 𝑖 + 1. Hence stage 𝑖 can be simulated

in 𝑂 (log log𝑁) rounds. Therefore, the overall round complexity is

𝑂 (log s · log log𝑁).
Similar to the proof of Theorem 4.6, the use of the estimators

of Lemma 4.1 only worsens the expected 𝑂 (log s) approximation

factor of the base Algorithm 1 by a factor that depends on 𝜖 , which

we can make an arbitrarily small constant.

The 𝑂 (log s)-approximation factor we get only holds for the

expected cost returned by the algorithm. We can make the𝑂 (log s)-
approximation hold whp (with a larger constant) using the standard

technique of running 𝑂 (log𝑁) copies of the algorithm and return-

ing the smallest solution. For each copy, the active graph in stage 𝑖

has size 𝑂 (𝑁 /log𝑁) whp, and we assign 𝑂 (log𝑁) different leader
machines that gather each active graph, simulate all iterations and

send the outcome to each set and element. Therefore at each stage,

each machine sends and receives at most 𝑂 ((𝑁 /log𝑁) · log𝑁) =
𝑂 (𝑁) messages, and we have no overhead in round complexity.

We can also simulate the remaining 𝑂 (log log𝑁) for each copy

in parallel by noting that a faithful simulation of Algorithm 1 only

requires each set added to the cover to send one bit to each element it

covers and each uncovered element sends one bit to its neighboring

sets, so it can update the deg𝑖,𝑘 (·) value for the next iteration 𝑘 .

Since each set an element sends only one bit, we can fit themessages

of the𝑂 (log𝑁) copies in𝑂 (1) words of local memory by having an

implicit ordering over all the copies. Therefore, the local memory

usage for each machine is still 𝑂 (𝑁) words.
Once each set knows which of the 𝑂 (log𝑁) set covers it be-

longs to, we can aggregate this information into one machine that

can compute all 𝑂 (log𝑁) costs. Each set sends a bit string of size

𝑂 (log𝑁) to this machine denoting all the copies in which it belongs

to the set cover solution. Therefore we have 𝑂 (log𝑁) solutions
generated independently, each with expected approximation ratio

𝑂 (log s). Standard Chernoff bounds show that the minimum of

these solutions has an approximation ratio 𝑂 (log s) whp.
Note that for the entire simulation we need only 𝑂 (log𝑁) ad-

ditional machines and since 𝐼 = Ω(𝑁), the additional 𝑂 (𝑁 log𝑁)
total memory is absorbed into the �̃� (·) notation. □

6 Conclusion and Future Work

This paper presents the first �̃� (log𝑁)-round and �̃� (log1.5 𝑁)-round
algorithms in the linear-memory and low-memory MPC models

respectively for the classical SetCover problem. These algorithms

150

ICDCN 2025, January 04–07, 2025, Hyderabad, India H. Ji, S. Pai, S. V. Pemmaraju, J. Sobel

are obtained by using the technique of sparsified graph exponenti-

ation, which was previously used to obtain faster MPC algorithms

for MIS [15] and 2-ruling sets [25].

Several natural questions arise from this work.

First, is it possible to design 𝑜 (log𝑁)-round MPC algorithms

for SetCover, at least in the linear-memory MPC model? Some

impressive progress has been made on derandomizing MPC al-

gorithms for MIS [6] and coloring [7]. Can these techniques be

extended to yield fast, deterministic algorithms for SetCover? In

combinatorial optimization, researchers have considered many gen-

eralizations of SetCover such as partial SetCover, capacitated

SetCover, multi-SetCover, etc. Designing fast MPC algorithms

for these generalizations would be a natural follow-up to this work.

References

[1] Noga Alon, László Babai, and Alon Itai. 1986. A Fast and Simple Randomized

Parallel Algorithm for the Maximal Independent Set Problem. J. Algorithms 7, 4

(dec 1986), 567–583. https://doi.org/10.1016/0196-6774(86)90019-2

[2] Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, Mo-

hammadTaghi Hajiaghayi, Richard M. Karp, and Jara Uitto. 2019. Massively

Parallel Computation of Matching and MIS in Sparse Graphs. In Proceedings of

the 2019 ACM Symposium on Principles of Distributed Computing (Toronto ON,

Canada) (PODC ’19). Association for Computing Machinery, New York, NY, USA,

481–490. https://doi.org/10.1145/3293611.3331609

[3] Bonnie Berger, John Rompel, and Peter W. Shor. 1994. Efficient NC Algorithms

for Set Cover with Applications to Learning and Geometry. In Proceedings of

the 30th IEEE Symposium on Foundations of Computer Science (Research Triangle

Park, North Carolina, USA). Academic Press, Inc., USA, 454–477.

[4] Keren Censor-Hillel and Michal Dory. 2021. Distributed Spanner Approximation.

SIAM J. Comput. 50, 3 (2021), 1103–1147. https://doi.org/10.1137/20M1312630

arXiv:https://doi.org/10.1137/20M1312630

[5] V. Chvatal. 1979. A Greedy Heuristic for the Set-Covering Problem. Math. Oper.

Res. 4, 3 (aug 1979), 233–235. https://doi.org/10.1287/moor.4.3.233

[6] Artur Czumaj, Peter Davies, and Merav Parter. 2020. Graph Sparsification for

Derandomizing Massively Parallel Computation with Low Space. Association for

Computing Machinery, New York, NY, USA, 175–185. https://doi.org/10.1145/

3350755.3400282

[7] Artur Czumaj, Peter Davies, and Merav Parter. 2021. Simple, Determin-

istic, Constant-Round Coloring in Congested Clique and MPC. SIAM

J. Comput. 50, 5 (2021), 1603–1626. https://doi.org/10.1137/20M1366502

arXiv:https://doi.org/10.1137/20M1366502

[8] Artur Czumaj, Jakub Łącki, Aleksander Mądry, Slobodan Mitrović, Krzysztof

Onak, and Piotr Sankowski. 2018. Round compression for parallel matching

algorithms. Proceedings of the Annual ACM Symposium on Theory of Computing

14, 1 (2018), 471–484.

[9] Laxman Dhulipala, Michael Dinitz, Jakub Łącki, and Slobodan Mitrović. 2024.

Parallel Set Cover and Hypergraph Matching via Uniform Random Sampling.

In 38th International Symposium on Distributed Computing (DISC 2024) (Leibniz

International Proceedings in Informatics (LIPIcs), Vol. 319), Dan Alistarh (Ed.).

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 19:1–

19:23. https://doi.org/10.4230/LIPIcs.DISC.2024.19

[10] Laxman Dhulipala, Michael Dinitz, Jakub Łącki, and Slobodan Mitrović. 2024.

Parallel Set Cover and Hypergraph Matching via Uniform Random Sampling.

arXiv:2408.13362 [cs.DS] https://arxiv.org/abs/2408.13362

[11] Irit Dinur and David Steurer. 2014. Analytical Approach to Parallel Repetition. In

Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing

(New York, New York) (STOC ’14). Association for Computing Machinery, New

York, NY, USA, 624–633. https://doi.org/10.1145/2591796.2591884

[12] Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Cliff Stein, and Zoya

Svitkina. 2010. On Distributing Symmetric Streaming Computations. ACM Trans.

Algorithms 6, 4, Article 66 (sep 2010), 19 pages. https://doi.org/10.1145/1824777.

1824786

[13] Mohsen Ghaffari. 2017. DistributedMIS via All-to-All Communication. In Proceed-

ings of the ACM Symposium on Principles of Distributed Computing (Washington,

DC, USA) (PODC ’17). Association for Computing Machinery, New York, NY,

USA, 141–149. https://doi.org/10.1145/3087801.3087830

[14] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and

Ronitt Rubinfeld. 2018. Improved massively parallel computation algorithms for

mis, matching, and vertex cover. In the Proceedings of the ACM Symposium on Prin-

ciples of Distributed Computing (PODC). Association for Computing Machinery,

New York, NY, USA, 129–138.

[15] Mohsen Ghaffari and Jara Uitto. 2019. Sparsifying Distributed Algorithms

with Ramifications in Massively Parallel Computation and Centralized Lo-

cal Computation. In Proceedings of the Thirtieth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January

6-9, 2019, Timothy M. Chan (Ed.). SIAM, Philadelphia, PA 19104, 1636–1653.

https://doi.org/10.1137/1.9781611975482.99

[16] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, Searching,

and Simulation in the Mapreduce Framework. In Proceedings of the 22nd Interna-

tional Conference on Algorithms and Computation (Yokohama, Japan) (ISAAC’11).

Springer-Verlag, Berlin, Heidelberg, 374–383. https://doi.org/10.1007/978-3-642-

25591-5_39

[17] Thorsten Götte, Christina Kolb, Christian Scheideler, and Julian Werthmann.

2021. Beep-And-Sleep: Message and Energy Efficient Set Cover. In Algorithms

for Sensor Systems: 17th International Symposium on Algorithms and Experiments

for Wireless Sensor Networks, ALGOSENSORS 2021, Lisbon, Portugal, September

9–10, 2021, Proceedings (Lisbon, Portugal). Springer-Verlag, Berlin, Heidelberg,

94–110. https://doi.org/10.1007/978-3-030-89240-1_7

[18] Christoph Grunau, Slobodan Mitrovic, Ronitt Rubinfeld, and Ali Vakilian. 2019.

Improved Local Computation Algorithm for Set Cover via Sparsification. CoRR

abs/1910.14154 (2019), 2993–3011. arXiv:1910.14154 http://arxiv.org/abs/1910.

14154

[19] Christoph Grunau, Slobodan Mitrović, Ronitt Rubinfeld, and Ali Vakilian. 2020.

Improved Local Computation Algorithm for Set Cover via Sparsification. In

Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA).

Society for Industrial and Applied Mathematics, 3600 University City Science

Center Philadelphia, PA, United States, 2993–3011. https://doi.org/10.1137/1.

9781611975994.181

[20] Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. 2018. Greedy and Local

Ratio Algorithms in the MapReduce Model. In Proceedings of the 30th on Sympo-

sium on Parallelism in Algorithms and Architectures, SPAA 2018, Vienna, Austria,

July 16-18, 2018, Christian Scheideler and Jeremy T. Fineman (Eds.). ACM, New

York, NY, USA, 43–52. https://doi.org/10.1145/3210377.3210386

[21] James W. Hegeman, Sriram V. Pemmaraju, and Vivek Sardeshmukh. 2014. Near-

Constant-Time Distributed Algorithms on a Congested Clique. In Distributed

Computing - 28th International Symposium, DISC 2014, Austin, TX, USA, October

12-15, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8784), Fabian

Kuhn (Ed.). Springer, Berlin, Germany, 514–530. https://doi.org/10.1007/978-3-

662-45174-8_35

[22] Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. 2002. An efficient distributed

algorithm for constructing small dominating sets. Distributed Comput. 15, 4

(2002), 193–205. https://doi.org/10.1007/s00446-002-0078-0

[23] David S. Johnson. 1974. Approximation Algorithms for Combinatorial Problems.

J. Comput. Syst. Sci. 9, 3 (dec 1974), 256–278. https://doi.org/10.1016/S0022-

0000(74)80044-9

[24] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A model of com-

putation for mapreduce. In Proceedings of the twenty-first annual ACM-SIAM

symposium on Discrete Algorithms. SIAM, Society for Industrial and Applied

Mathematics, USA, 938–948.

[25] Kishore Kothapalli, Shreyas Pai, and Sriram V. Pemmaraju. 2020. Sample-And-

Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model. In 40th

IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani, K K Birla Goa

Campus, Goa, India (Virtual Conference) (LIPIcs, Vol. 182), Nitin Saxena and Sunil

Simon (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Oktavie-Allee,

66687 Wadern, Germany, 28:1–28:18. https://doi.org/10.4230/LIPIcs.FSTTCS.

2020.28

[26] L. Lovász. 1975. On the Ratio of Optimal Integral and Fractional Covers. Discrete

Math. 13, 4 (jan 1975), 383–390. https://doi.org/10.1016/0012-365X(75)90058-8

[27] Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent

Set Problem. SIAM J. Comput. 15, 4 (1986), 1036–1053. https://doi.org/10.1137/

0215074 arXiv:https://doi.org/10.1137/0215074

[28] Merav Parter and Eylon Yogev. 2018. Congested Clique Algorithms for Graph

Spanners. In 32nd International Symposium on Distributed Computing, DISC 2018,

New Orleans, LA, USA, October 15-19, 2018 (LIPIcs, Vol. 121), Ulrich Schmid and

Josef Widder (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, USA,

40:1–40:18. https://doi.org/10.4230/LIPIcs.DISC.2018.40

[29] David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. Society

for Industrial and Applied Mathematics, 3600 University City Science Center

Philadelphia, PA, United States.

[30] Sridhar Rajagopalan andVijay V. Vazirani. 1999. Primal-Dual RNCApproximation

Algorithms for Set Cover and Covering Integer Programs. SIAM J. Comput. 28, 2

(feb 1999), 525–540. https://doi.org/10.1137/S0097539793260763

[31] Grigory Yaroslavtsev and Adithya Vadapalli. 2018. Massively Parallel Algorithms

and Hardness for Single-Linkage Clustering under ℓ𝑝 Distances. In Proceedings

of the 35th International Conference on Machine Learning (Proceedings of Machine

Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, US,

5600–5609. https://proceedings.mlr.press/v80/yaroslavtsev18a.html

151

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1145/3293611.3331609
https://doi.org/10.1137/20M1312630
https://arxiv.org/abs/https://doi.org/10.1137/20M1312630
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1145/3350755.3400282
https://doi.org/10.1145/3350755.3400282
https://doi.org/10.1137/20M1366502
https://arxiv.org/abs/https://doi.org/10.1137/20M1366502
https://doi.org/10.4230/LIPIcs.DISC.2024.19
https://arxiv.org/abs/2408.13362
https://arxiv.org/abs/2408.13362
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/1824777.1824786
https://doi.org/10.1145/1824777.1824786
https://doi.org/10.1145/3087801.3087830
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1007/978-3-030-89240-1_7
https://arxiv.org/abs/1910.14154
http://arxiv.org/abs/1910.14154
http://arxiv.org/abs/1910.14154
https://doi.org/10.1137/1.9781611975994.181
https://doi.org/10.1137/1.9781611975994.181
https://doi.org/10.1145/3210377.3210386
https://doi.org/10.1007/978-3-662-45174-8_35
https://doi.org/10.1007/978-3-662-45174-8_35
https://doi.org/10.1007/s00446-002-0078-0
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.28
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.28
https://doi.org/10.1016/0012-365X(75)90058-8
https://doi.org/10.1137/0215074
https://doi.org/10.1137/0215074
https://arxiv.org/abs/https://doi.org/10.1137/0215074
https://doi.org/10.4230/LIPIcs.DISC.2018.40
https://doi.org/10.1137/S0097539793260763
https://proceedings.mlr.press/v80/yaroslavtsev18a.html

	Abstract
	1 Introduction
	1.1 SetCover in the MPC Model

	2 Technical Contributions
	2.1 Sparsified Graph Exponentiation
	2.2 Sparsified Graph Exponentiation Applied to SetCover
	2.3 Main Results

	3 Related Work
	4 Low-Memory MPC Algorithm
	4.1 Linear Total Memory

	5 Exponentially Faster Simulation in Linear-Memory MPC
	6 Conclusion and Future Work
	References

